• B.Sc., University of Aberdeen
  • Ph.D., University of Toronto

 Figure 31

Martian breccia NWA 7533 contains the oldest rocks from Mars (potash feldspar rich) with 4.4 billion year zircons

Research Interest Statement

We study meteoritic chondrules and refractory inclusions to determine the astrophysical and planetary processes that formed them; chondrites for information on asteroid geology; and martian meteorites to determine  the roles of volcanic and impact processes in Mars history.


Leonard Medal of the Meteoritical Society, September 2014


1. Anthony Lagain, … Roger Hewins, et al. (2022). Early crustal processes revealed by the ejection site of the oldest martian meteorite. Nat Commun 13, 3782 (2022). 

2. R. H. Hewins, P.-M. Zanetta, B. Zanda, and 17 others (2021)  Northwest Africa (NWA) 12563 and ungrouped C2 chondrites: Alteration styles and relationships to asteroids. Geochim. Cosmochim. Acta 311, 238-273.

3. Whattam, S. A., Hewins, R. H., Seo, J., & Devouard, B. (2022). Refractory inclusions as Type IA chondrule precursors: Constraints from melting experiments. Geochimica et Cosmochimica Acta, 319, 30-55.

4. R.H. Hewins, M. Humayun J.-A. Barrat, B. Zanda, and 6 others  (2020) Northwest Africa 8694, a ferroan chassignite: bridging the gap between nakhlites and chassignites. Geochim. Cosmochim. Acta 282, 201-226.

5. R.H. Hewins, B. Zanda , S. Pont and P.-M. Zanetta.  (2019) . Northwest Africa 10414, a pigeonite cumulate shergottite.  Meteoritics & Planetary Science 54, 2132-2148.

6. Jean-Pierre Lorand, Hewins R.H., Humayun M., Remusat L., Zanda B., La C., Pont S. (2018) Chalcophile-siderophile element systematics of hydrothermal pyrite from martian regolith breccia NWA 7533. Geochim. Cosmochim. Acta 241, 134-149.

7. Roger Hewins, Claire Condie, Melissa Morris, Mark Richardson, Nicolas Oullette, and Matthew Metcalf. (2018) Thermal history of CBb chondrules and cooling rate distributions of ejecta plumes. The Astrophysical Journal Letters, 855:L17 (7pp).

8. R. Hewins, B. Zanda, H. Leroux, M. Humayun, A. Nemchin, J.P. Lorand, S. Pont, D. Deldicque, J. Bellucci, P. Beck, H. Leroux, M. Marinova, L. Remusat, C. Göpel, E. Lewin, M. Grange, A. Kennedy and M.J. Whitehouse. (2017) Regolith breccia Northwest Africa 7533: Mineralogy and petrology and implications for early Mars. Meteoritics & Planetary Science 51, 89-124. Doi: 10.1111/maps.12740.

9. Lorand J.-P., Hewins R. H., Remusat L., Zanda B., Pont S., Leroux H., Marinova M., Jacob D., Humayun M., Nemchin A., Grange M., Kennedy A. and Christa Göpel (2015) Nickeliferous pyrite tracks pervasive hydrothermal alteration in Martian regolith breccias: a study in NWA 7533. Meteoritics & Planetary Science 50, 2099–2120.

10. Hewins R. H., Bourot-Denise M., Zanda B., Leroux H., Barrat J.-A., Humayun M., Göpel C., Greenwood R. C., Franchi I. A., Pont S., Lorand J.-P., Cournède C., Gattacceca J., Rochette P., Kuga M., Marrocchi Y. and Marty B. (2014)  The Paris meteorite, the least altered CM chondrite so far. Geochim. Cosmochim. Acta 24, 90–222.

11. Humayun, A. Nemchin, B. Zanda, R. H. Hewins, M. Grange, A. Kennedy, J.-P. Lorand, C. Göpel, C. Fieni, S. Pont, D. Deldicque (2013) Origin, and Age of the Earliest Martian Crust from meteorite NWA 7533. Nature 503, 53-56, doi:0.038/nature 2764.

12. J. Gattacceca,, R. H. Hewins, and 13 others. (2013) Magnetism of a pristine sample from  Mars: the Tissint Martian meteorite. Meteorit. Planet. Sci.48. 199-936. DOI: 0./maps.272.

13. Hewins R.H. and  Zanda B. (2012)  Chondrules: precursors and interactions with the nebular gas.  Meteorit. Planet. Sci. 47, 201-38.

14. Hewins R.H., Zanda B. and Bendersky C. (2012) Evaporation and recondensation of sodium in Semarkona Type II chondrules.  Geochim. Cosmochim. Acta 78, 1-7.

15. Boesenberg  J. and Hewins R.H.  (2010)   An experimental investigation into the formation of phosphoran olivine and pyroxene. Geochim. Cosmochim. Acta 74, 923-94.

16. Whattam, S.A., and Hewins, R.H. (2009)  An origin for PO chondrules from thermally annealed granoblastic olivine aggregates. Geochim. Cosmochim. Acta 73, 5460–5482.

17. E. J. Tronche, R. H. Hewins, and G. J. MacPherson (2007) Formation conditions of aluminum-rich chondrules.   Geochim. Cosmochim. Acta 70, 336-338.  

18. Zanda B., R. H. Hewins, M. Bourot-Denise, P. A. Bland and F. Albarède (2006) Formation of Solar Nebula Reservoirs by Mixing Chondritic Components.  Earth Planet. Sci. Lett. 248, 650-660.

19. Hewins R. H., Connolly H. C. Jr., Lofgren G. E. and Libourel G. (2005)  Experimental constraints on chondrule origins. In Chondrites and the Protoplanetary Disk (eds. A. N. Krot, E. R. D. Scott and B. Reipurth), ASP Conference Series 341, 286-316. Astronomical Society of the Pacific, San Fransisco.

20. B. A. Cohen and R. H. Hewins (2004) An experimental study of the formation of metallic iron in chondrules.  Geochim. Cosmochim. Acta  68, 677-689.

21. R. H. Hewins and G. E. Fox (2004)  Chondrule textures and precursor grain size: an experimental study. Geochim. Cosmochim. Acta  68, 197-925.

22. Yu Y., Hewins R.H., Alexander C.M.O’D. and Wang J. (2003)  Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts.  Geochim. Cosmochim. Acta  67, 773-786. 

23. Cohen, B.A., Hewins, R.H. and Yu Y. (2000) Evaporation in the young solar nebula as the origin of “just-right” melting of chondrules.  Nature 406, 600-602.