Minimal Heterochiral de Novo Designed 4Fe–4S Binding Peptide Capable of Robust Electron Transfer

J. Dongun Kim†‡, Douglas H. Pike†‡, Alexei M. Tyryshkin†, G. V. T. Swapna‡§, Hagai Raanan†, Gaetano T. Montellone†‡, Vikas Nanda*‡∥,† and Paul G. Falkowski*†⊥⊥

† Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901, United States
‡ Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
§ Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
∥ Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
⊥⊥ Department of Earth and Planetary Sciences, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States

J. Am. Chem. Soc., Article ASAP
DOI: 10.1021/jacs.8b07553
Publication Date (Web): August 24, 2018
Copyright © 2018 American Chemical Society

* nandavi@cabm.rutgers.edu, *falko@marine.rutgers.edu

Abstract

Ambidoxin is a designed, minimal dodecapeptide consisting of alternating L and D amino acids that binds a 4Fe–4S cluster through ligand–metal interactions and an extensive network of second-shell hydrogen bonds. The peptide can withstand hundreds of oxidation–reduction cycles at room temperature. Ambidoxin suggests how simple, prebiotic peptides may have achieved robust redox catalysis on the early Earth.

The 4Fe–4S cubane cluster is a ubiquitous inorganic cofactor mediating a wide variety of electron transfer reactions across the tree of life. The structurally conserved ferredoxin fold binds a 4Fe–4S cubane cluster with four cysteine residues in a common sequence motif (Cys-X1-X2-Cys-X3),
The ferredoxin α/β topology is one of a small number of folds proposed to have given rise to myriad proteins. The origin and evolution of the ferredoxin fold family was likely a key evolutionary milestone in origins of biological electron transfer. Although the structures of ferredoxins are well studied, it has proven challenging to design simpler, artificial peptides that stably bind iron–sulfur complexes and are capable of reversible electron transfer reactions. De novo designs based on intrinsic symmetry of iron–sulfur clusters have produced artificial folds that bind metal and exhibit reversible redox stability for a few dozen cycles.

Here, we present a minimal dodecapeptide ferredoxin, consisting of alternating L and D amino acid residues, comprised only of cysteine with arginine or lysine. This peptide binds an 4Fe–4S cluster through ligand–metal interactions and an extensive network of second-shell hydrogen bonds. The resulting “ambidoxin” peptide has robust redox stability; the holo-peptide can undergo hundreds of oxidation–reduction cycles at room temperature.

Analyses of backbone dihedral angles of iron–sulfur cluster binding heptapeptide (CXXCXXC) fragments from nonredundant structures in the Protein Data Bank (Figure 1a,b) revealed a five-residue alternating alpha-left and alpha-right structural motif. This motif is similar to the alphapleated sheet postulated by Pauling, and nest motifs observed by Watson and Milner-White. Extending this pattern to 12 residues produces a unique curved backbone that encircles the iron sulfur cluster (Figure 1c,d, S1). This unusual conformation could be enforced with a sequence of alternating L and D amino acids that stabilize alpha-right and alpha-left backbone conformations respectively (Figure S1g). Molecular dynamics simulations, starting from geometrically and energetically idealized conformations, converged on a unique stable structure that closely aligns with natural ferredoxin (Figure 1e, S1). Because of the equal contributions of L and D amino acids in the design, we refer to this class of molecules as “ambidoxins.”

Given the stability of the 4Fe–4S cubane cluster in the absence of oxygen, we expected that reconstitution of peptides in the presence of iron and sulfur salts would assemble as a cluster fully coordinated by a single peptide. To test this, we synthesized three ambidoxin variants that included either basic or acidic amino acids at the positions between cysteines, and a tryptophan at the third position to allow quantification by absorption at 280 nm. Upon iron–sulfur cluster assembly, K and R ambidoxin peptides showed a 420 nm charge-transfer absorption band prior to reduction with sodium dithionite (Figure S6), and rhombic EPR signatures consistent with a bound 4Fe–4S cluster in the reduced state after treatment with sodium dithionite (Figure 2a, S8).

Holo-peptide yields of 80–94% were determined by spin counting experiments. Dipole–dipole interactions between clusters were not observed by EPR, supporting the presence of a monomeric holo-peptide. After reconstitution, holo-peptides were stable for days under anaerobic conditions at room temperature from pH 5 to 8 (Figure S9).
We did not observe cluster binding to the negatively charged E peptide (Figure S7). Assembled 4Fe–4S–4(Cys) complexes would have a −2 or −3 charge depending on the oxidation state. It is plausible that the significant charge associated with seven surrounding glutamates electrostatically destabilizes the holo-peptide, preventing assembly.

To validate the modeled structure of the paramagnetic peptide-cluster complex, we examined proton hyperfine interactions within 4 Å of the cluster by pulsed-EPR methods. Orientation-selective ESEEM and HYSCORE experiments were performed at several magnetic field positions across the rhombic EPR line-shape (Figures S10, S12–S17). Both techniques consistently identified several protons strongly coupled to an unpaired electron spin residing on the 4Fe–4S cluster. Experiments in deuterated buffer revealed that four protons (labeled H1–H4 in Figure 2b, S16–S17) were nonexchangeable and likely belong to β-protons of the four cysteine ligands. From the HYSCORE cross-peak analysis (Figure S18), we were able to extract isotropic and anisotropic hyperfine coupling constants of the four protons, including relative orientations of their anisotropic hyperfine tensors with respect to the g₁ axis of electron g-factor (Table S2). These hyperfine parameters provided both Fe–H distances and angles between Fe–H vectors and the g₁ axis, providing eight constraints that were consistent with models from molecular mechanics simulations of ambidoxin (Figure S19 and Table S2).

To resolve the structure and electronic state of the cluster at ambient temperature, we performed paramagnetic NMR experiments from 5 to 32 °C on holo-K peptide prepared to near-stoichiometric yield. At all temperatures, large chemical shifts were observed, with Curie and anti-Curie temperature dependencies indicative of strong hyperfine coupling between cysteine β-protons and mixed- or ferrous-valence iron, similar to those observed in natural protein environments (Figure 2c,d, Figure S20). Combining the HYSCORE-based analysis, the computational ambidoxin model, and the temperature dependencies of NMR derived chemical shifts, we assigned three contact-shifted 1H resonances to β-Cys2 and γ-Cys5 Hβ atoms, ligating a mixed-valence Fe²⁺ pair, and two other 1H resonances (Figure 2c) to β-Cys8 and γ-Cys11 Hβ atoms, ligating a ferrous Fe³⁺ pair (Figures S19 and S20). The temperature-dependent shifts were fully reversible and persistent at both pH 5 and pH 8.5 (Figure S20). These results demonstrate a stable peptide-cluster coordination structure around the bound paramagnetic 4Fe–4S center.

To test redox turnover stability, we performed cyclic voltammetry on a pyrolytic graphite edge electrode under anoxic conditions. The midpoint potential of 4Fe–4S bound to K and R peptides at pH 8.5 (Figure 3a) was approximately −450 mV, which is within the range for extant bacterial ferredoxins. One would expect the extensive hydrogen bonding and solvent exposure to reduce the Fe–S bond covalency and produce a species with a less reductive potential than bacterial ferredoxin, but electrostatic contributions from K and R ambidoxin side chains appear to compensate, leading to a more reductive midpoint potential. Measurement of peak currents at different scan rates confirmed that current was not diffusion limited, and was due to direct electron transfer between the working electrode a metallo-peptide film. The holo-peptide endures hundreds of redox turnovers at room temperature, decaying with a rate constant of around 0.2% per cycle (Figure 3c). This robust redox stability exceeds that of many previously designed artificial metallo-peptides by ten to a hundred-fold. As in natural iron–sulfur proteins such as ferredoxin and rubredoxin, ambidoxin redox stability likely originates from the extensive network of second-shell hydrogen bonds from backbone amides to cysteine thiols and cluster μ-sulfurs.
sequence, produced a simple, artificial ferredoxin that closely mimics redox behavior of its biologically evolved counterparts. Such structural and sequence simplicity greatly increases the likelihood of prebiotic evolution of catalytic redox-active peptides on early Earth.(34) Molecules much like the ambidoxins may have served as soluble electron carriers prior to the emergence of homochirality required for protein translation and folding.(35) In this scenario, ambidoxin would have assembled from racemic sources of amino acids present in the environment, with peptide bonds formed abiotically, near hydrothermal vents(36) or on mineral surfaces.(37)

Wächtershäuser and others proposed short heterochiral peptides with catalytic metal centers were critical intermediates in the earliest stages of chemolithotrophic origins of life.(38,39) The robust redox stability of ambidoxins is a clear demonstration in the laboratory that early peptide catalysts could have been functionally on par or even superior to modern proteins in some respects. Without chaperones, metal cluster biogenesis and homeostasis mechanisms present in a cellular milieu, early peptides had to specifically and stably coordinate metals in order to be effective catalysts.(40) This is in contrast to the view of early enzymes as poorly functioning ancestors of modern catalysts.(41,42) Geometric calculations indicate multiple solutions for short heterochiral molecules that form rings of different lengths (Supporting Information). Ambidoxins may be just one case in a larger family of metal-chelating peptides that could have served as prebiotic molecular ancestors for redox catalysts that sparked the emergence of modern oxidoreductases.

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b07553.

> Experimental details (PDF)

PDF
> ja8b07553_si_001.pdf (4.33 MB)
Author Present Address
Physiological Communications Research Group, Nokia Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

Author Contributions
These authors contributed equally.

The authors declare the following competing financial interest(s): J.D.K., D.H.P. V.N. and P.G.F. are inventors on a patent application submitted by Rutgers, the State University of New Jersey. G.T.M. is founder of Nexomics Bioscience, Inc.

Acknowledgments
We thank Drs. Andrew Mutter, Antonio Rosato and Lucia Banci for helpful discussions and Dr. Kevin Wyman for technical assistance. This work was supported by a grant from the Gordon and Betty Moore Foundation on “Design and Construction of Life’s Transistors” (GBMF-4742) to V.N. and P.G.F. and by NIH shared instrumentation grant (1S10OD018207-01) to G.T.M.

References

12. Watson, J. D.; Milner-White, E. J. A novel main-chain anion-binding site in proteins: The nest. A particular combination of ϕ, ψ values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J. Mol. Biol. 2002, 315 (2), 171–182, DOI: 10.1006/jmbi.2001.5227 [Crossref], [PubMed], [CAS] Get it @ R

29. Eck, R. V.; Dayhoff, M. O. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. *Science 1966*, **152**(3720), 363–366, DOI: 10.1126/science.152.3720.363 [Crossref], [PubMed], [CAS] [Get it @ R]

37. Ferris, J. P.; Hill, A. R., Jr; Liu, R.; Orgel, L. E. Synthesis of long prebiotic oligomers on mineral surfaces. *Nature 1996*, **381**, 59, DOI: 10.1038/381059a0 [Crossref], [PubMed], [CAS] [Get it @ R]

41. Johnsson, K.; Allemann, R. K.; Widmer, H.; Benner, S. A. *Nature 1993*, **365**, 530–532, DOI: 10.1038/365530a0 [Crossref], [PubMed], [CAS] [Get it @ R]

Harnessing Structural Dynamics in a 2D Manganese–Benzoquinoid Framework To Dramatically Accelerate Metal Transport in Diffusion-Limited Metal Exchange Reactions
Liu, Li, DeGayner, Winegar, Fang, and Harris
Abstract
Full Text HTML PDF w/ Links Hi-Res PDF

Polar Solvent Induced Lattice Distortion of Cubic CsPbI$_3$ Nanocubes and Hierarchical Self-Assembly into Orthorhombic Single-Crystalline Nanowires
Sun, Huang, Liu, Xu, Zhang, Jiang, Xue, Xu, Ma, Ding, Ge, Gu, Fang, Zhong, Hu, and Wan
Abstract
Full Text HTML PDF w/ Links Hi-Res PDF

Catalytic Alkene Difunctionalization via Imidate Radicals
Nakafuku, Fosu, and Nagib
Abstract
Full Text HTML PDF w/ Links Hi-Res PDF

Measuring Ligand Binding Kinetics to Membrane Proteins Using Virion Nano-oscillators
Ma, Syu, Shan, Henson, Wang, Desai, Zhu, and Tao
Abstract
Full Text HTML PDF w/ Links Hi-Res PDF Hi-Res PDF