Chasing the 400 kyr pacing of deep-marine sandy submarine fans: Middle Eocene Aínsa Basin, Spanish Pyrenees

Blanca Cantalejo1*, Kevin T. Pickering1, Ken G. Miller2 and Conall Mac Niocaill3

1 Department of Earth Sciences, University College London (UCL), Gower Street, London WC1E 6BT, UK
2 Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08854, USA
3 Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK

*Correspondence: ucfbbca@ucl.ac.uk

Abstract: In an attempt to understand the relative importance of climate and tectonics in modulating coarse-grained sediment flux to a tectonically active basin during what many researchers believe to be a greenhouse period, we have studied the Middle Eocene deep-marine Aínsa Basin, Spanish Pyrenees. We use orbital tuning of many spectral gamma-ray-logged fine-grained siliciclastic sections, already shown to contain Milankovitch frequencies, in conjunction with a new high-resolution palaeomagnetic study through the basin sediments, to identify polarity reversals in the basin as anchor points to allow the conversion of a depth-stratigraphy to a chronostratigraphy. We use these data, in conjunction with a new age model incorporating new biostratigraphic data, to pace the development of the deep-marine sandy submarine fans over c. 8 million years. Timing for the sandy submarine fans shows that, unlike for the fine-grained interfan sediments, coarse-grained delivery to the basin was more complex. Approximately 72% of the sandy fans are potentially coincident with the long-eccentricity (400 kyr) minima and, therefore, potentially recording changing climate. The stratigraphic position of some sandy fans is at variance with this, specifically those that likely coincide with a period of known increased tectonic activity within the Aínsa Basin, which we propose represents the time when the basin was converted into a thrust-top basin (Gavarnie thrust sheet), presumably associated with rapid uplift and redeposition of coarse clastics into deep-marine environments. We also identify sub-Milankovitch climate signals such as the c. 41.5 Ma Late Lutetian Thermal Maximum. This study demonstrates the complex nature of drivers on deep-marine sandy fans in a tectonically active basin over c. 8 Myr. Findings of this study suggest that, even during greenhouse periods, sandy submarine fans are more likely linked with times of eccentricity minima and climate change, broadly consistent with the concept of lowstand fans. However, hysteresis effects in orogenic processes of mountain uplift, erosion and delivery of coarse siliciclastics via fluvial systems to coastal (deltaic) and shallow-marine environments likely contributed to the complex signals that we recognize, including the 2–3 Myr time gap between the onset of deep-marine fine-grained sediments in the early development of the Aínsa Basin and the arrival of the first sandy fans.

Supplementary Materials: Filtered records for each of the analysed gamma-ray logged sections. Anchor points, SARs tables and graphs and alternative tuning sections are available at: https://doi.org/10.6084/m9.figshare.c.5132975

Received 21 October 2019; revised 7 September 2020; accepted 24 September 2020

The principal processes that drive high-frequency modulation of sediment flux to deep-marine environments include climate change that may be associated with eustatic sea-level change, sediment flux via terrestrial drainage systems, tectonics and autocyclically.

Many researchers recognize a strong climatic/eustatic control for the deposition of sediment gravity flow (SGF) deposits and submarine-fan development in ocean basins, e.g., for the Amazon Fan (Manley and Flood 1988; Flood and Piper 1997; Maslin et al. 2006), Mississippi Fan (Bouma et al. 1989; Feeley et al. 1990; Weimer 1990; Kolla and Perlmutter 1993), Nile Fan (Maldonado and Stanley 1976; Ducassou et al. 2009), Bengal Fan (Weber et al. 2003), Indus Fan (Kolla and Coupès 1987; von Rad and Tahir 1997; Prins et al. 2000; Bourget et al. 2013), Mozambique Fan (Marz et al. 2008), Zaire Fan (Babonneau et al. 2002; Anka and Séranno 2004), the Antarctic Pacific margin (Barker and Camerlenghi 2002) and, the glacially influenced, canopy-dominated Southwest Grand Banks Slope, Canada (Armitage et al. 2010). Such climatic/eustatic control at a Milankovitch timescale has also been identified in ancient tectonically active deep-marine basins, although during an icehouse period when large-amplitude eustatic sea-level change occurred (e.g. the Kazusa Group forearc basin, SE Japan, Pickering et al. 1999; the Corinth rift, Greece, Weltje and de Boer 1993 and Backert et al. 2010). Some submarine fans show active growth during both rising sea level and highstands (Piper and Normark 1983; Kuehl et al. 1989; Flood et al. 1991; Kolla and Perlmutter 1993; Weber et al. 1997; Covault et al. 2007; Ducassou et al. 2009; Covault and Graham 2010).

During sea-level falls, deltas may prograde to the shelf-edge break, releasing large volumes of sediment on the slope or into canyon heads, increasing sediment flux to the deep sea (Damuth et al. 1988; Bouma et al. 1989; Nelson et al. 1992; Kenyon et al. 1995; Normark et al. 1997; von Rad and Tahir 1997; Prins et al. 2000; Ducassou et al. 2009). The progressive exposure during sea-level lowstands typically corresponds to slope instability and the triggering of mass transport deposits and mass transport complexes (MTDs/MTCs). Thick intervals of sediment slides, slumps and debris flows (MTDs/MTCs) typically occur at the base of a deep-marine fan system (Ducassou et al. 2009). However, although sea-level lowstands greatly favour the development of submarine fans, the timing and type of SGF events in these systems may depend not only on sea-level changes, and its rate of change, but also on the nature of available sediments, shelf and river processes in the staging area for SGF’s, tectonic setting, and seafloor topography/gradations of the basins (cf. Kolla and Macurda 1988; McGhargue 1991).

During warmer and wetter periods, increased river-water discharge may cause increased erosion of fluvialite and older
deposits (Blum and Tornqvist 2000), resulting in increased sediment flux to the shelf margin. High fluvial discharge may result in the progradation of deltas to the shelf edge and to deep-marine environments (Burgess and Hovius 1998; Carvajal et al. 2009). Burgess and Hovius (1998) proposed that, in the absence of significant sea-level fluctuations, for instance during greenhouse conditions, fan growth can continue if rivers and deltas have sufficient sediment loads (flux) allowing sediment to be transported to the shelf edge. Ducassou et al. (2009) found that, in the Nile submarine fan, periods of increased SGF activity and the accumulation of MTDs/MTCs occurred during phases of major flooding. During more arid periods, fluvial discharge decreased (Blum and Tornqvist 2000), and sediments were temporarily stored within the drainage basin (fluvialite deposits including alluvial fans).

Several studies have shown that tectonic processes may trigger submarine fan initiation. Periods of active thrusting could result in the creation of relief in the hinterland associated with an increased supply of coarse clastic sediment, whilst during tectonic quiescence, fine-grained deposition would dominate (de Boer et al. 1991). Tectonic pulses of coarse-grained sediment have been invoked in Pleistocene successions, in the pull-apart basin, SE Turkey (Dunne and Hempton 1984), and in the northeastern Ebro basin, southeastern Spanish Pyrenees (Guillemocho 2010). Various studies indicate that model tectonic processes suggest that fault activity can be intermittent and produce semi-cyclical depositional patterns at similar timescales to those of climatic processes (tens of thousands of years) (Peper et al. 1992; Beekman et al. 1995; Peper and de Boer 1995; Lee and Schwarz 1996; Nicol et al. 1997, 2005; Morley et al. 2000; Walsh et al. 2002; Mouslopoulou et al. 2009).

Autocyclic processes may also act to influence the distribution of submarine fan sediments. These processes include channel migration and avulsion, lobe switching and lateral compensatory stacking patterns (Kenyon et al. 1995; Parsons et al. 2002; Nicholas and Quine 2007; Dejouck et al. 2008; Clarke et al. 2010; Prélat et al. 2010). Such processes occur because there is a tendency for sediment gravity flows to occupy topographic lows and smooth topographic relief (Mutti and Sonnino 1981; Straub et al. 2009; Ganti et al. 2011). Cohesive flows, including MTDs/MTCs, however, can create mounded seafloor topography to create so-called ‘ponded’ accommodation space where compensational stacking patterns and channel migration may occur (e.g. Martinson and Bakken 1990; Ross et al. 1994; Pickering and Corregidor 2005). In the Danube submarine fan, sea-level-controlled fan activity, with the fan being most active during lower sea level, has been interpreted by Popescu et al. (2001) to show the development of the most recent channel–levée system during a single lowstand being influenced by channel avulsion and sand delivery under autocyclic processes.

From the above, it is clear that attempting to discriminate between the effects of the main drivers on sediment flux and deposition in deep time has proven challenging. Most studies that recognize a climatic origin focus on the strength or amplitudes of the orbital cycles, but not the phase relationship of climate response to orbital forcing, something that is important for understanding the forcing mechanism/s caused by global climate change. In addition, many basins around the world have complex and/or poorly understood tectonic evolution and non-unique sediment entry points that may result in complicated basin infills, which add complexity to the recognition of the main sediment drivers.

The deep-marine Aínsa Basin stratigraphy comprises a cyclic alternation of coarse-grained sandstone packages (interpreted as sandy submarine fans) and fine-grained packages of mostly fan lateral-margin, including levee, and interfan sediments (Pickering and Bayliss 2009; Pickering and Cantalejo 2015 and references therein). The presence of these sediment packages shows significant variation in sediment supply to the basin with alternating periods of coarser-grained and finer-grained sediments. Trying to understand the main driver on the deposition of the coarse-grained deep-marine submarine fans in the Aínsa Basin has proven controversial, with some researchers advocating a tectonic origin (Mutti 1983-84; Muñoz et al. 1994, 1998; Arbùés et al. 1998; Pickering and Corregidor 2005; Moody et al. 2012; Castelltort et al. 2017) and others a climatic origin (Das Gupta and Pickering 2008; Pickering and Bayliss 2009; Sutcliffe and Pickering 2009). In this study, we have investigated the main depositional drivers in the Aínsa Basin, Spanish Pyrenees.

Cantalejo and Pickering (2014, 2015) and Scotchman et al. (2015) analysed many fine-grained cyclostratigraphic sections in the Aínsa Basin using various geochemical proxies for environmental change, including outcrop spectral gamma-ray data in interfan and channel–levée–overbank successions throughout the entire deep-marine stratigraphy of the Aínsa Basin, and demonstrated a strong Milankovitch forcing with the short eccentricity and obliquity cycles appearing dominant in most of the records, and precession cycles not always being present. These high-frequency variations in the supply of finer-grained sediments to the deep-marine Aínsa Basin were interpreted as due to changing storminess and continental runoff during warmer and wetter periods (Cantalejo and Pickering 2014, 2015). The underlying driver on the increased flux of coarser-grained sands into the basin, however, remains unresolved and is the focus of this paper.

This study presents orbital tuning of mainly gamma-ray-logged fine-grained successions described in Cantalejo and Pickering (2014, 2015) and ties the stratigraphy to an age model of the basin constrained by new palaeomagnetic data, with the aim of establishing the precise timing of initiation of individual sandy submarine fans. By converting the stratigraphy of the Aínsa Basin into a chronostratigraphic framework, for the first time in any deep-marine sedimentary basin in deep time, we are better able to understand the likely underlying controls on coarse-grained sediment delivery.

Our study aims to improve the understanding of controls on the timing of coarse-grained sediment supply within finer-grained cyclic sedimentation in tectonically active basins, and to serve as a potential model for other studies in modern and ancient deep-marine basins worldwide.

Geological setting

The Aínsa Basin is among the best natural laboratories in which to study controls on siliciclastic, structurally confined, deep-marine systems for several reasons: (i) it has a complete deep-marine basin stratigraphy with a duration of c. 8–10 Myr; (ii) the principal sediment source was from a single or several very closely spaced entry point/s at the east/southeast end (present co-ordinates) of the basin; (iii) mapping shows that the sandy submarine fans were episodic with only one major submarine channel active at any time (Pickering and Bayliss 2009; Pickering and Cantalejo 2015); (iv) substantial parts of the source-to-sink system are preserved, from non-marine to deep-marine environments, including the basin margins; (v) the tectonic context of the basin is well understood, both at a regional (orogenic) scale and the development of the synsedimentary growth anticlines that bound the basin; (vi) the interfan ‘background’ or fine-grained sediments have already revealed a record of Milankovitch cyclicity at precession, obliquity and short eccentricity scales (Heard et al. 2008; Cantalejo and Pickering 2014, 2015; Scotchman et al. 2015); (vii) there is a good understanding of Middle Eocene global climate (greenhouse period) and mean sea-level change that the Aínsa Basin stratigraphy can be placed within (e.g. Miller et al. 2005; Kominz et al. 2008; Miller and Wright 2017).

The Aínsa Basin is located in the footwall of the Montsec-Cotiella Thrust within the South Pyrenean Thrust System (Benthall and Burbank 1996). The basin developed as a foreland basin during the Middle Eocene, due to flexural subsidence caused by the advancement of the Pyrenean deformation front (Puigdefábregas
et al. 1986, 1992; Dreyer et al. 1999). As the thrust sheets propagated southward towards the foreland, two basin-bounding anticlines developed, the Mediano and the Boltaña anticlines to the west and east, respectively (Mutti 1983/84; Muñoz et al. 1998; Fernández et al. 2004). The continued development of these anticlines resulted in the Aínsa Basin becoming a thrust-top basin incorporated into the hangingwall of the Gavarnie-Sierras Exteriores thrust sheet (Muñoz et al. 1998; Dreyer et al. 1999; Fernández et al. 2004; Pickering and Bayliss 2009; Fernández et al. 2012). Palaeomagnetic studies by Muñoz et al. (2013), supported by recent work (Cantalejo et al. 2020) suggest regional clockwise vertical rotations of the Aínsa Oblique Zone of c. 45°–60° from early Lutetian to late Bartonian with the largest rotations (c. 40°) before c. 42.5 Ma. We interpret that these large rotations were only possible once the Aínsa Basin was incorporated into the Gavarnie thrust sheet as a thrust-top (piggyback) basin.

The Aínsa Basin consists of c. 4 km of syntectonic slope, base-of-slope and proximal basin-floor deposits known as the Hecho Group (Mutti et al. 1972; Remacha and Fernández 2003; Fernández et al. 2004; Pickering and Corregidor 2005; Pickering and Bayliss 2009). The basin succession comprises deep-marine SGF deposits (definitions after Pickering and Hiscott 2016) with thick intervals of thin-bedded, laminated siltstones and marlstones in units up to several hundred metres thick, interpreted as interfan and fan lateral-margin deposits interbedded with eight sand-rich, coarse-grained deep-marine systems (Pickering and Corregidor 2005; Pickering and Bayliss 2009; Pickering and Cantalejo 2015): from the oldest, they are named the Fosado, Los Molinos, Arro, Gerbe, Banastón, Aínsa, Morillo and Guaso systems. Each of these systems contains two to six sandy, channelized, submarine fans (Pickering and Corregidor 2005).

The deep-marine sediments of the Aínsa Basin were sourced from an extensive fluvio-deltaic complex in the Tremp-Ager Basin (Montañana Group) (Mutti et al. 1985; Marzo et al. 1988) that transferred clastics into deep-marine environments via incised gullies and canyons (e.g. the Charo Canyon) (Puigdefàbregas et al. 1992; Millington and Clark 1995). Figure 1 is a summary stratigraphy of the Aínsa Basin.

There is a long-term 3–5 Myr tectonic drive in the Aínsa Basin that caused the development of angular unconformities that can be traced from the shelf to the deep-marine environments (Arbués et al. 1992; Remacha et al. 2003; Pickering and Corregidor 2005; Pickering and Bayliss 2009; Pickering and Cantalejo 2015): from the oldest, they are named the Fosado, Los Molinos, Arro, Gerbe, Banastón, Aínsa, Morillo and Guaso systems. Each of these systems contains two to six sandy, channelized, submarine fans (Pickering and Corregidor 2005).

The deep-marine sediments of the Aínsa Basin were sourced from an extensive fluvio-deltaic complex in the Tremp-Ager Basin (Montañana Group) (Mutti et al. 1985; Marzo et al. 1988) that transferred clastics into deep-marine environments via incised gullies and canyons (e.g. the Charo Canyon) (Puigdefàbregas et al. 1992; Millington and Clark 1995). Figure 1 is a summary stratigraphy of the Aínsa Basin.

There is a long-term 3–5 Myr tectonic drive in the Aínsa Basin that caused the development of angular unconformities that can be traced from the shelf to the deep-marine environments (Arbués et al. 1992; Muñoz et al. 1998; Remacha et al. 2003; Pickering and Bayliss 2009) (Fig. 1). The stratigraphy of the Aínsa Basin can be divided broadly into two distinct successions: an older unit (Lower Hecho Group) which is structurally more deformed than the overlying unit, which has an essentially layer-cake stratigraphy (Upper Hecho Group) (e.g. Pickering and Corregidor 2005).

Above the Atiart unconformity (Fig. 1), which defined the onset of deep-marine deposits in the Aínsa Basin (Farrell et al. 1987; Payros et al. 2009; Fernández et al. 2012), there is a c. 2.5 Myr interval of essentially fine-grained (mudstone-dominated) sediments with isolated sandstones (or very thin packages of sandstones) before the first thick sandy Fosado fans. This stratigraphic interval and its timing is consistent with numerical models of hysteresis in an orogen where there is a time lag between tectonic uplift, denudation and river catchment reorganization to deliver substantial coarse clastics via the fluvial and coastal systems (e.g. Li et al. 2018). For example, in the Zagros Mountains fold-and-thrust belt, Tucker and Singerland (1996) calculated a geomorphic response time up to a few million years. In the case of the Pyrenees, this hysteresis is specifically linked with the development of a deep-marine foreland basin on the floured Tethyan (Mesozoic–Eocene) carbonate platform.

The submarine-fan model developed by Pickering and Corregidor (2005), modified by Pickering and Bayliss (2009), suggests that the typical facies distribution and stratigraphy observed in the Aínsa Basin can be explained by changes in relative base level (Fig. 2). In this model, an initial lowering of relative base level (e.g. a sea-level fall or differential tectonic uplift/subsidence) could have triggered the accumulation of MTDs/MTCs. As the deep-water stratigraphy in the Aínsa Basin was fully marine (Pickering and Corregidor 2005), the basin likely experienced some eustatic sea-level variation. As the relative base level started to rise, sediment supply to the fan decreased and eventually resulted in fan abandonment. This model still appears broadly tenable irrespective of the driver/s on changing relative base level. There are, however, some studies that have suggested that submarine-fan initiation and MTD/MTC accumulation may result from high fluvial discharge not directly linked with sea-level falls (Nakajima and Itaki 2007; Ducassou et al. 2009; Covault and Graham 2010; Covault et al. 2010; Jorry et al. 2011; Toucanne et al. 2012). An increase in sediment supply from high fluvial discharge could potentially result in a similar facies architecture profile with the overall fining-upward trend of the submarine fan being associated with a waning of the flooding events. However in this latter scenario, one might expect more MTDs/MTCs within the fan stratigraphy and not commonly linked with the base.

Methodology

We use orbital tuning to identify regular cyclostratigraphic periodicities in the Aínsa Basin sediments linked with astronomical frequencies. This method is used to refine the time scale of cyclostratigraphic analysis by aligning the geological records to the calculated orbital periodicities of Milankovitch cycles. Orbital tuning was first used by Hays et al. (1976), and since then many researchers have used this method (e.g. Imbrie et al. 1984; Gale et al. 1999; Bender 2002; Weedon et al. 2004; Westerhold et al. 2013). Orbital tuning involves a two-step process. First, a band-pass filtering of the record is applied to the frequencies that are significant in the time-series and can be linked with orbital periodicities. These frequencies are then compared with the orbital history of eccentricity, obliquity and precession for that time interval.

This paper uses the cyclostratigraphic analysis of the gamma-ray-logged sections presented in Cantalejo and Pickering (2015) to determine the main frequencies associated with eccentricity and obliquity cycles. The location of each of the gamma-ray-logged sections can be seen in Figure 3. These sections were logged in continuous and undeformed fine-grained sediments interpreted mainly as interfan successions with minor channel–levee–overbank deposits. The Gerbe, Labuerda 2, Boltaña, Forcz and Morillo sections have a good chronostratigraphic age control from recent biostratigraphic and magnetostratigraphic studies (Scotchman et al. 2015; Cantalejo et al. 2020).

Frequency-selective filtering

A band-pass filter was applied to the total gamma-ray records to show the amplitude of the signal and reflect the changing temporal importance of individual frequencies in the records. Only frequencies that consistently appeared in the spectra of the analysed data with confidence levels >95%, and that appeared associated with eccentricity and obliquity orbital cycles using a combination of spectral techniques such as REDFIT, ASM and wavelet analysis, were applied for band-pass filtering (Cantalejo and Pickering 2015). The program used for filtering is the Macintosh program Analysese 2.0.3 (Paillard et al. 1996). This program uses a band-pass Gaussian filter that modifies the original data by convolution with a Gaussian probability density function. This Gaussian function is centred at the specified frequency and the width of the function is determined by the filter bandwidth. The
bandwidth used is the same as that determined by spectral analysis using REDFIT. The filtered records for each of the analysed gamma-ray-logged sections can be seen in Supplementary Material 1.

Orbital tuning

Orbital tuning was performed by comparing the total-gamma records presented in Cantalejo and Pickering (2015) filtered to the frequency associated with eccentricity (from REDFIT and ASM spectral analysis) to the historical eccentricity curves using the La2010a orbital solution of Laskar et al. (2011). The short eccentricity is the dominant cycle revealed by most of the time-series analysis. The control or anchor points used in the total-gamma-filtered records are the depth points that constitute the top of each of the filtered cycles. These depth points were matched with the eccentricity maxima points in the La2010a orbital solution of Laskar et al. (2011). In those cases where the top of the cycles in the total-gamma-filtered records showed a poorly defined curve shape, then the anchor points used were the lowest point in the cycle and these were matched to eccentricity minima in the La2010a orbital solution of Laskar et al. (2011). The rest of the depth points in the total natural gamma time-series were matched to absolute time by using a simple linear interpolation between anchor points (Supplementary material 2).

The best evidence to show that orbital tuning was successful and that the time scale was accurate is reflected in a significant increase and sharpening of the orbital-frequency bands that were not tuned (Imbrie et al. 1984; Muller and MacDonald 2000). For example, successful orbital tuning may cause obliquity cycles to be strengthened and show an increase in spectral power when the records are tuned to eccentricity. However, the authors have highlighted that coherency can also occur when the record has been aligned to the wrong set of orbital cycles or to the wrong part of the orbital history (Shackleton et al. 1995; Weedon 2005). In order to prevent this, a good chronostratigraphic record of the stratigraphy is required. Cantalejo et al. (2020) use magnetostratigraphy in combination with calcareous nannofossil identification through the same gamma-ray-logged sections (Cantalejo and Pickering 2015). The three identified polarity reversals C21r–C21n, C21n–
C20r and C20r–C20n enabled a more accurate orbital tuning of these sections to the eccentricity and obliquity curves of the Middle Eocene.

There are also risks associated with over-tuning the time-series records to match the target curve (Muller and MacDonald 2000). Manipulating the data to match the target orbital curve may result in unphysical sediment accumulation rates (SARs). It is important, therefore, to check for each interval that SARs are consistent and do not show large spikes in the time-depth plot. SARs have been calculated for each of the tuned records and are presented in Supplementary material 3 and 4. Alternative tuning of the gamma-ray records to the eccentricity curves are presented in Supplementary Material 5.

Results

The location of the gamma-ray-logged sections can be seen in Figure 3. The gamma-ray-logged sections tuned to the orbital solution of Laskar et al. (2011) are shown in Figure 4 (Gerbe section), Figure 5 (Labuerda 2 section), Figure 6 (Boltaña section), Figure 7 (Forcaz section) and Figure 8 (Morillo section). Figure 9 shows the spectral analysis using REDFIT of total-gamma records tuned to eccentricity. The stratigraphic position of each of the tuned records and are presented in Supplementary material 3 and 4. Alternative tuning of the gamma-ray records to the eccentricity curves are presented in Supplementary Material 5.

Orbital tuning of the Gerbe section

The stratigraphically oldest section that was logged is the c. 200 m long Gerbe section, comprising the sediments between the Gerbe I to Banastón II fans. Orbital tuning of the Gerbe section used five anchor points. The best match between the total-gamma-filtered records of the Gerbe section suggests that the base of this section can be dated at 47.36 Ma (Fig. 4). This is in agreement with the age of the C21r–C21n polarity reversal found at the base of the section (c. 10 m stratigraphic height). The top of the Gerbe section, interpreted as the base of the Banastón II Fan, can be established at 46.93 Ma, giving a total duration for the Gerbe section of c. 420 kyr. Figure 10 shows that tuning the records to eccentricity strengthens the power of the obliquity peak (c. 47 kyr). This peak can be matched with the obliquity O1 orbital period of 52 kyr which is then significant with confidence levels >99%. The peak at 32 kyr is also more prominent in the tuned data. This peak is likely to be associated with the obliquity O2 40 kyr orbital period. Tuning the records also strengthens the precession cycles P1 (c. 21 kyr) and P22 (c. 16 kyr) which were not significant in the untuned spectrum (<80% confidence levels). SARs for each of the intervals between the anchor points varied between 28.6–63.2 cm kyr⁻¹, with averaged values of c. 47 cm kyr⁻¹.

Orbital tuning of the Labuerda section 2

The 350 m thick Labuerda section 2 is the longest undeformed gamma-ray-logged section in the Aínsa Basin and is stratigraphically younger than the Gerbe section. Its base appears to be within the interfan sediments of the Banastón II Fan and the top is c. 50 m below the base of the Aínsa I sandbody. Nine anchor points were used for tuning the records. The change in magnetic polarity from normal to reverse identified at c. 185 m height correlates with the chron C21n–C20r magnetic reversal (Cantalejo et al. 2020). The age of this reversal is estimated to have occurred at 45.72 Ma (Gradstein et al. 2012). The best possible match, taking into
Fig. 3. Geographical location of the gamma-ray-logged sections in the Aínsa Basin; from Pickering and Cantalejo (2015). The Late Lutetian Thermal Maximum section is c. 15 km south of Guaso.
consideration the position of this magnetic reversal in the records, establishes the beginning of Labuerda section 2 at 46.19 Ma. The top of the Labuerda section 2 is dated at 45.13 Ma, giving a total duration for the section of c. 924 kyr.

Figure 10 shows that tuning the records to eccentricity strengthens the power of the obliquity peaks (52 and 42 kyr) which are now both present with >99% confidence levels. These peaks indicate that some variation in the duration of obliquity cycles is present in the records (e.g. obliquity 52 and 40 kyr). Tuning the records also strengthens the precession cycles (P1 (26 kyr) and possibly P2 (17 kyr). The precession peak P1 is now well above the >99% confidence level and the peak at 17 kyr is >95% confidence level.

SARs calculated post-tuning of the Labuerda section 2 have sensible SARs that vary between 24.4 cm kyr\(^{-1}\) and 54.4 cm kyr\(^{-1}\), with a mean value of c. 35 cm kyr\(^{-1}\). This SAR is very similar to the most representative SAR of the orbital periods for the Middle Eocene calculated by ASM analysis at 37 cm kyr\(^{-1}\) (Cantalejo and Pickering 2015) and from palaeomagnetic studies at c. 34.5 cm kyr\(^{-1}\) (Cantalejo et al. 2020).

Orbital tuning of the Boltaña section

The Boltaña section is 167 m long and has its base in the interfan deposits of the Aínsa I Fan. The top of the section is close to the initiation of the Aínsa III Fan. A total of six anchor points were used for tuning the records. Magnetostratigraphic studies (Cantalejo et al. 2020) show reverse polarity throughout the Boltaña section tied with chron C20r. The composite stratigraphy of the Aínsa Basin suggests that the top of the Labuerda section 2 and the base of the Boltaña section are very close stratigraphically and cannot be separated by more than c. 50 m. Therefore, we estimate that the Boltaña section is located c. 165–215 m above the C21n–C20r reversal at 45.72 Ma identified at c. 185 m height in the Labuerda section 2. Comparison between the eccentricity curves of the La2010a orbital solution of Laskar et al. (2011) and the total-gamma-filtered records shows a similar curve pattern (Fig. 6). The well-developed eccentricity cycles of the first half of the Boltaña records and the loss of cycle definition in the top 60 m can be matched to the eccentricity curves of the La2010a orbital solution of Laskar et al. (2011) between c. 45.3 and 44.7 Ma. Several attempts were undertaken to match the selected anchor points to the eccentricity maxima/minima points of the eccentricity curves of the orbital solution of Laskar et al. (2011) around this time interval (Fig. 6). The best possible match between these two records suggests the Boltaña section was deposited between 45.29–44.56 Ma, which is close to the initial estimation from stratigraphic study. The total duration of this section is 736 kyr.
The SARs of this section varied between 14.6–30.5 cm kyr\(^{-1}\), with a mean value of c. 24 cm kyr\(^{-1}\). The averaged value is similar to that calculated using ASM analysis, which yielded an estimated averaged SAR of 26–30.5 cm kyr\(^{-1}\) (Cantalejo and Pickering 2015).

Orbital tuning of the Forcaz section

The Forcaz section is c. 185 m long and the sediments are younger than those of the Boltaña section. The top of the Boltaña section is located within the interfan deposits of the Aínsa II and Aínsa III sandy submarine fans. Thickness estimations from sedimentary logging suggest that the top of the Boltaña section is located c. 50 m below the Aínsa III sandy fan (Cantalejo and Pickering 2015). The Aínsa III sandy fan in the Forcaz section is represented by a 15 m heterolithic package located at 30–45 m height. Therefore, it is reasonable to assume that the beginning of the Forcaz section coincides approximately with the end of the Boltaña section. The base of the Forcaz section should, therefore, have accumulated close to c. 44.56 Ma. Eight anchor points were used for tuning the records. Magnetostratigraphic studies show reverse polarity throughout the Forcaz section (Cantalejo et al. 2020), interpreted to be chron C20r (45.72–43.43 Ma, Gradstein et al. 2012). The best curve match between the anchor points and the eccentricity maxima points around this time interval and the best response in the time-series analysis are shown in Figure 7. The interval between 60–90 m height has undergone more manipulation to match the total-gamma-filtered records to the eccentricity cycles of the orbital solution, whilst the rest of the data remain mostly unchanged. Although, there is no significant strengthening of the spectral peaks after tuning, the three main orbital parameters (eccentricity, obliquity and precession) are present with confidence levels \(>99\%\) (Fig. 10). The Forcaz section most likely accumulated between 44.63–44.02 Ma with a total duration of c. 615 kyr.

Calculating the SAR for each stratigraphic interval in the Forcaz section gives 16.3 cm kyr\(^{-1}\) and 50.5 cm kyr\(^{-1}\), with a mean...
Fig. 6. Orbital tuning of the Boltaña section. Filtered total-gamma records of the Boltaña section (a) have been matched to eccentricity cycles of the La2010a orbital solution of Laskar et al. (2011) (b) using six anchor points designated with an asterisk (*). The resultant tuned records (c) show the distortion of the original data.
Fig. 7. Orbital tuning of the Forcaz section. Filtered total-gamma records of the Forcaz section (a) have been matched to eccentricity cycles of the La2010a orbital solution of Laskar et al. (2011) (b) using eight anchor points designated with an asterisk (*). The resultant tuned records (c) show that the original data have undergone more distortion in the interval between 60 and 90 m height.
value of c. 29.4 cm kyr\(^{-1}\). This averaged SAR value is close to that calculated using ASM analysis of 33 cm kyr\(^{-1}\) (Cantalejo and Pickering 2015) and similar to the 28.5 cm kyr\(^{-1}\) SAR calculated in sediment cores of similar age (Well A6 core in Cantalejo and Pickering 2014). The Forcaz section (c. 185 m) and the A6 core (150 m of undeformed sediments) mostly fully overlap, i.e., the undeformed A6 core has an overlap of c. 100–120 m with the Forcaz section. Cantalejo and Pickering (2014) studied the geochemistry and sedimentology of the Aínsa Well A6) and, based on core-to-outcrop correlations, estimated that the Forcaz starts c. 30 m earlier and the A6 core ends in an MTC close to the initiation of the Morillo I sandy fan.

Fig. 8. Orbital tuning of the Morillo section. Filtered total-gamma records of the Morillo section (a) have been matched to obliquity cycles of the La2010a orbital solution of Laskar et al. (2011) (b) using 10 anchor points designated with an asterisk (*). The resulted tuned records (c) show the distortion of the original data.
Fig. 9. Spectral analysis using REDFIT of total-gamma records tuned to eccentricity. The tuned records show a general strengthening of the obliquity peak and precession cycles with an increase in confidence levels.
Orbital tuning of the Morillo section

As the Morillo section is the shortest of all the gamma-ray-logged sections at 123 m in stratigraphic thickness (Cantalejo and Pickering 2015), the total-gamma records therefore have been tuned to the obliquity cycle, which has reduced the confidence of our estimations. Ten anchor points were used for tuning the records.

Age estimations using biostratigraphic studies suggest the Morillo System was deposited between 43.2 and 44.2 Ma (late Lutetian), during nannofossil zone NP15 – NP16 and shallow benthic foraminifera zone SBZ14 – SBZ15 (Scotchman et al. 2015). These estimated ages are in agreement with studies from Mochales et al. (2012) who estimated the end of the Morillo System at 43.2 Ma. 43.9 – 44.9 Ma (Middle Lutetian), during nannofossil zone NP15 and shallow benthic foraminifera zone SBZ13 – SBZ14 (Scotchman et al. 2015).

Magnetostratigraphic studies show reverse polarity throughout the Morillo section, likely to be chron C20r (45.72 – 43.43 Ma) (Gradstein et al. 2012) with a polarity reversal to normal polarity at the base of Morillo III Fan (C20r – C20n boundary) (Cantalejo et al. 2020). Thickness estimations from sedimentary logging suggest that the top of the Morillo section is located at the base of the Morillo III Fan by a thick MTC. It is reasonable to assume that the top of the Morillo section is very close to the C20r/C20n reversal at 43.43 Ma. The best curve match and the best response in the time-series analysis are shown in Figure 8. There is a significant strengthening of the spectral peaks after tuning, with obliquity and precession present at confidence levels >99% (Fig. 10). Tuning the total-gamma data to other obliquity cycles reduces the confidence levels of the precession cycles significantly (Supplementary Material 5). The Morillo section, therefore, was more likely deposited between 43.64 – 43.42 Ma with a total duration of c. 220 kyr. The SAR for each stratigraphic interval in the Morillo section gives a variation between 14.5 and 22.5 cm kyr\(^{-1}\), with a mean value of c. 19 cm kyr\(^{-1}\).

Sub-Milankovitch climate signals in the Aínsa Basin

In deep-marine basins, hyperthermal events are recorded in sediments as a clay-rich layer indicating dissolution of carbonate (Lourens et al. 2005; Zachos et al. 2005; Leon-Rodriguez and Dickens 2010). Also, in studies of core data from the North Sea, hyperthermals have been recognised with high total gamma-ray readings in core logs (e.g. Kender et al. 2012; Kemp et al. 2016). The Late Lutetian Thermal Maximum (LLTM) has been defined as a short-lived (c. 30-kyr) transient global warming event that occurred at c. 41.5 Ma in the Late Lutetian within magnetochron C19r, and was characterized by a c. 2°C warming of the deep ocean in the southern South Atlantic (Westerhold et al. 2018). These authors described the event in three cores from the South Atlantic (ODP sites 1260, 1263 and 702), in which the LLTM occurs as a dark-coloured clay-rich band and X-ray fluorescence scanning of these cores shows a distinctive peak in Fe intensities, decrease in carbonate content and negative carbon isotope excursion of 0.86. The clay-rich layer with lowered carbonate content with respect to the average normal concentration was estimated to last c. 15 kyr.

In the Aínsa Basin, the candidate LLTM is a prominent (with a few subsidiary) 3 m thick, basin-wide black mudstone/claystone band (Fig. 11), unique to the basin, and mappable above the youngest submarine fan in the Guaso System. Our new age model dates this band at c. 41.5 Ma within Chron 19 (Cantalejo, et al.
2020). Figure 11 is a 40 m thick sedimentary section that we logged through this interval with a hand-held spectral gamma-ray tool. Sediments in this interval are characterized by a fine-grained succession of marls and siltstones with rare thin-bedded centimetre-scale fine-grained sandstone turbidites. Paler-coloured bands probably represent carbonate-rich cemented bands. The thin nummulate-rich layers have been interpreted as storm-triggered turbidites (Cantalejo and Pickering 2014). The dark-grey c. 3 m layer is located towards the upper part of the log (Fig. 12). High-resolution gamma-ray logging shows that the dark bands are characterized by an increase in the total gamma and K readings, which we believe are associated with an increase in clay content. There is also a tendency for greater Th content across the section. As Edgar et al. (2007) identified negative isotopic excursions in both the δ^{13}C and δ^{18}O from LLTM deep-ocean sediments, we undertook similar studies through ~50 m of stratigraphy that included the dark band, but failed to detect a prominent signal (Pickering and Dobson, unpublished data). Also, a cross-plot of δ^{13}C versus δ^{18}O suggested a strong diagenetic overprint.

Time-series analysis of the mudrocks in the Aínsa Basin have revealed a Milankovitch forcing on the finer-grained, interfan sediments and suggest SARs of c. 30–35 cm kyr^{-1} (Cantalejo and Pickering 2014, 2015), consistent with the interval containing the dark mudstones/claystones as the LLTM. As the LLTM is a c. 30-kyr global transient hyperthermal event, dated at 41.52 Ma (cf. Westerhold et al. 2018), this would suggest that its duration as a stratigraphic thickness should be c. 10 m, consistent with the LLTM at outcrop encapsulating both dark bands, at c. 23 m and c. 29–32 m in the log shown in Figure 12.

Discussion

In this section, we discuss the main drivers that may have been responsible to the delivery of coarse sediment supply to the Aínsa Basin.

Eustatic control on the deposition of the Aínsa Basin sandy fans

Figure 13 shows the orbitally tuned stratigraphy of the Aínsa Basin and the eccentricity curves of the La2010a orbital solution of Laskar et al. (2011). Periods of eccentricity minima are shown. The figure also presents a high-resolution eustatic sea-level curve for the Middle Eocene. This sea-level curve shows a general decrease in sea level of tens of metres (with higher frequency sea-level variations) from the Arro System towards the Guaso System. Pickering and Bayliss (2009) suggested that the deposition of the 25 sandy submarine fans in the Aínsa Basin could have been controlled by glacio-eustatic changes linked to the c. 400 kyr Milankovitch eccentricity frequency. Although the presence of glaciation during the Middle Eocene remains controversial, there is growing evidence that supports the presence of at least ephemeral ice sheets that resulted in moderate (20–40 m) high-frequency global sea-level changes during this time period (Haque et al. 1987; Miller et al. 2005; Komniz et al. 2008; Tripati and Darby 2018). Many studies have linked ice-sheet initiation and expansion to periods of reduced insolation during the 400 kyr eccentricity minima (Zachos et al. 2001; Pälike et al. 2006a, b; Liebrand et al. 2011). The storing of water as groundwater (and lakes) on the continents, also known as aquifer-eustasy, although still not well recognized in the stratigraphy record, is an alternative mechanism for similar scale sea-level changes paced by long-term eccentricity cycles during warm greenhouse where ice-sheets were absent (Sames et al. 2016, 2020).

Conventional Milankovitch theory asserts that orbitally induced changes in high-latitude summer insolation control the waxing and waning of ice sheets, and that precession should dominate the ice-volume response as it most strongly modulates summer insolation. Ruddiman (2006) argued that the dominant 100 kyr response of ice sheets appears to lie mainly in internal feedbacks (CO_2 and ice albedo) that drive the gradual build-up of large ice sheets and their subsequent rapid destruction. Ice melting during terminations is initiated by uniquely coincident forcing from insolation and greenhouse gases at the periods of tilt and precession. However, in a study by Tabor et al. (2014), using an Earth system model coupled with a dynamic ice sheet to separate the climate responses to idealized transient orbits of obliquity and precession that maximize insolation changes for the early Pleistocene (2.588–0.781 Ma), they found that ice-volume proxy records vary almost exclusively at the frequency of the obliquity cycle. Our field-based study recognizes a dominant eccentricity and obliquity 41 kyr signal (Fig. 10).

Our study shows that over c. 8 Myr in the Middle Eocene, the long-eccentricity (400 kyr) Milankovitch cyclicity is likely archived in the accumulation of c. 72% of the sandy submarine fans in the Aínsa Basin stratigraphy. We only include those sandy fans that contain good radiometric control from the Gerbe to the Guaso systems and discount those from the Lower Hecho Group characterized by complex structural deformation with no tuned sections available. Figure 13 suggests that many of the submarine fans were initiated during periods of 400 kyr eccentricity minima, which tend to coincide with eustatic sea-level lows. However, there is a much more complicated climatic relationship between any possible eustatic sea-level variations and the timing of deposition for each of the Aínsa deep-marine sandy submarine fans. Our study suggests that submarine-fan development linked with eccentricity cycles with periodicities of c. 95 kyr, 123 kyr and 400 kyr are likely to have been more regular and periodic than the timing of fan initiation estimated from this study and, therefore, we conclude that if this mechanism was the principal driver for the deposition of the 25 submarine fans of the Aínsa Basin, then such climate signals were not surprisingly complex (cf. Ruddiman 2006).

Other studies have revealed the importance of both the short and long eccentricity in deep-marine sediments, e.g., the Oligocene (Wade and Pälike 2004) and Middle Miocene global ice-volume and ocean-carbon reservoir changes as recorded in deep-sea records (Shevenell et al. 2004; Holbourn et al. 2005; Westerhold et al. 2018). Some modelling results have also highlighted the dominant long eccentricity (400 kyr) forcing on the Middle Miocene climate change (DeConto and Pollard 2003; Ma et al. 2011; Tian et al. 2013). Results from climate models for low-latitude Late Palaeozoic successions have suggested that both high-latitude ice-sheet accumulation and ablation, and low-latitude climate change were paced by the eccentricity. Periods of high eccentricity amplified precession-driven changes in insolation and promoted high-latitude ice-sheet volume fluctuations as well as increased low-latitude precipitation variability. When eccentricity was low, the amplification of precession-driven insolation fluctuations was reduced, which promoted high-latitude continental ice-sheet stability and less variable low-latitude precipitation (Horton et al. 2012). A strong climatic 400 kyr signal is identified in the Early Eocene (Smith et al. 2014), and the Palaeocene (greenhouse conditions) deep-marine Zumaya section in northern Spain (Dinars-Turell et al. 2003). The Zumaya section comprises rhythmic alternations of pink-redish-grey hemipelagic limestones and marlstones, plus some intercalations of thin-bedded carbonate turbidites. Also, in a sedimentological and geochemical analysis of palaeoecologically and temporally related Early–Middle Eocene hemipelagic successions in the Basque–Cantabrian Basin, comprising hemipelagic limestone–marl alternations, Martinez-Braceras et al. (2017) recognize astronomically regulated precession cycles of 21 kyr modulated by orbital eccentricity cycles of 100 kyr. Thus, in sediments of the same age as the siliciclastics in the Aínsa Basin,
and in linked marine basins, a strong climatic signal has been identified.

Castelltort et al. (2017) used high-resolution carbon isotope stratigraphy in an attempt to provide an independent record of global sea-level changes for the Arro, Gerbe and lower Banastón systems (first investigated in a pilot study for the Aínsa Basin by Das Gupta 2008, figure 7.4). Castelltort et al. (2017) proposed that the bulk δ^{13}C$_{carb}$ signal accurately correlated with the coeval eustatic curve from the New Jersey (USA) passive margin based on the backstripped curves of Miller et al. (2005), and that the sandy fans accumulated during eustatic lowstands and fine-grained marly interfan sediments correlate with rising and highstand sea levels (as proposed by Pickering and Bayliss 2009, figure 6). However, they also asserted that the sandy Arro Fan accumulated during a sea-level highstand that could be associated with changes in fluviatile discharge. Our new palaeomagnetic study and age model for the Aínsa Basin (Cantalejo et al. 2020) using a higher-resolution eustatic sea-level curve (Fig. 13), suggests that the Arro-I and Arrow-II sandy fans coincide with high-frequency eustatic falls (and eccentricity minima), whereas with a lower-resolution (smoothed) eustatic curve, as used by Castelltort et al. (2017) to argue for a highstand for the Arro System, the opposite conclusion can be reached. This apparent contradiction, therefore, highlights the inherent problems in applying low-resolution eustatic curves to investigate climatic/eustatic vs. tectonic controls on sediment flux. Higher-resolution eustatic curves can lead to a contrary interpretation.

In the Jaca Basin, Huyghe et al. (2012) described cyclic carbonates and explained them as due to high-amplitude, high-frequency (<100 kyr) glacio-eustatic sea-level changes. Also, Gómez-Paccard et al. (2011) documented composite sequences in the Montserrat alluvial fan/fan-delta complex of the Ebro Basin, which they interpreted as 400 kyr long eccentricity cycles, possibly controlled by sea-level fluctuations. Outcrop studies in other Paleogene deep-marine systems throughout the Spanish Pyrenees have already been shown to preserve an archive of Milankovitch cyclicity with the long eccentricity as an important control on depositional processes (Gómez-Paccard et al. 2011; Batenburg et al. 2012).

Fluvial discharge control on the deposition of the Aínsa Basin

An increase of coarse-grained supply to the deep-marine environment during a period of eccentricity maxima could have been linked to intense rainfall and flash floods. This may be the case of the Gerbe II Fan (Fig. 13), but this might have been linked with tectonic activity and basin reconfiguration as the Aínsa Basin was transformed into a thrust-top basin (see the section below on tectonic controls). However, we note that whilst the Gerbe-II, Banastón-V and Morillo-I fans appear to be at eccentricity maxima, all three accumulated during longer-term eustatic falling sea level.

The relatively small width (c. 20 km) of the Aínsa Basin, the presence of a narrow shelf typical of tectonically active margins (Milliman and Syvitski 1992), and the narrowly focused principal sediment source/s at the eastern end of the Aínsa Basin were associated with submarine fans being fed directly from terrestrial and coastal areas with cycles of fan initiation and abandonment reflecting orbitally induced climate changes (Weltje and de Boer 1993; Milliman and Syvitski 1992) suggest that rivers in tectonically active margins are more susceptible to periodic floods that can
Fig. 12. Total-gamma, K and Th records measured from a portable spectrometer; sample interval 20 cm with sample readings of 3 min to improve accuracy. The dark bands are characterized by the highest total-gamma and K values. The Late Lutetian thermal Maximum interval likely includes both prominent dark bands in the boxed area. The high K and Th values likely reflect decreased carbonate and, therefore, greater clay mineral abundance as proposed by Westerhold et al. (2018) from Atlantic cores.
Fig. 13. Revised chronostratigraphy of the sediments of the Aínsa Basin using the tuned gamma-ray log sections to build a more accurate chronostratigraphy. Note that as these sections are all off-axis in the fine-grained deposits, the onset of sandy fan accumulation started at some time prior to that shown in these sections, i.e., at a stratigraphically lower point. Where a ‘?’ symbol is indicated, the exact stratigraphic location of the submarine fan has pinch-out and cannot be fully resolved. The Arro System is tectonically deformed with an overturned fold limb and associated with several thrust/shear zones. Eccentricity and obliquity curves are from Laskar et al. (2011). High-resolution sea-level curves are from Miller, K.G. (2019, unpublished) with a five-point moving average smoothed curve.
discharge large amounts of sediment into deep water, even during highstands. Basin geomorphological factors can facilitate the transport of sediment from fluvial and deltaic to deep-marine environments, with small drainage basins and the presence of narrow shelves being most favourable to such processes (Milliman and Svirezheva 1992; Covalt and Graham 2010). In the Tremp Basin, high-frequency climate change has been identified within the fluvi-deltaic sediments of the Montaña Group (e.g. Weltje et al. 1996; Nijman 1998).

In the western Pyrenees, Payros and Martínez-Braceras (2014), in a study of the Gorrondatxe section (Global Stratotype Section and Point for the base of the Lutetian Stage in the western Pyrenees), showed that the characteristics of Lower–Middle Eocene fan-fringe/basin-plain deep-marine siliciclastic and pelagic deposits varied in line with orbitally forced fluctuations in seasonal rainfall, runoff and terrigenous input. Reduced SGF activity during the formation of pelagic limy precession hemi-couplets suggested subdued seasonality and low terrigenous input. Conversely, sandy SGFs were more frequent, had greater energy and were more voluminous during the formation of pelagic marly hemi-couplets, suggesting precession hemicycles with strong seasonality and heavy summer rainfall. They found that these differences at precession timescales were enhanced at maximum eccentricity because sandy SGF activity was most intense during the boreal summer at perihelion (i.e., maximum seasonality), but declined at aphelion. At minimum eccentricity, with relatively weak seasonality throughout one (or more) precession cycle (~21 kyr), sandy SGF activity remained relatively low. These patterns in the Gorrondatxe fan-fringe/basin-plain succession suggest that the orbitally forced environmental changes must also have affected the inner and middle parts of the submarine fan. The astronomical influence on terrigenous sediment input also determined the changing characteristics of the pelagic sedimentation. The terrigenous contribution to pelagic sediments fluctuated by a factor of five during opposite precession times at maximum eccentricity, whereas there was almost no fluctuation at minimum eccentricity, a situation that seems the converse for most Ainsa Basin sandy fans.

Also, Kodama et al. (2010) deduced orbitally induced changes in magnetite content in Eocene marine marlstones of the Pamplona–Arguis Formation, Spanish Pyrenees, which they interpreted as caused by periodic variations in precipitation, fluvial discharge and terrigenous supply during the rainy season.

Although this mechanism may explain some of the sandy fans, our results suggest that is not dominant in the deep-marine sediments of the Ainsa Basin.

Tectonic control on the deposition of the Ainsa Basin sandy fans

It can be argued that the aperiodic timing for the deposition of the twenty-five principal sandy fans in the Ainsa Basin could partially be explained by tectonic processes. The growth of the synsedimentary Mediano Anticline could have increased the gradient of the depositional profile, leading to a local relative sea-level fall, probably of low to moderate amplitude (cf. Mutti et al. 2003). The intermittent growth of the Mediano Anticline at time intervals in the order of ~1–1.5 Myr has been linked to the episodic movement of the Cotiella–Montsec (Gavarnie) thrust sheet and as a potential driver identified in the formation of the so-called ‘tectonostatigraphic units’ (Holl and Anastasio 1993; Muñoz et al. 1998; Arbaíes et al. 1998; Remacha et al. 2003; Pickering and Corrigedor 2005). Such postulated episodes of anticline growth would have resulted in relative lowering of the base level that may have triggered MTD/MTG deposition and coarse clastics being stripped from the coastal and narrow shelf areas to accumulate as sandy submarine fan deposits in the Ainsa Basin.

Tectonic processes likely exerted a significant control on sediment delivery towards the end of the Lower Hecho Group when the Gerbe II Fan appears to have accumulated closer to a 400 kyr long eccentricity maximum (Fig. 13). The Upper Hecho Group (Banastón, Ainsa, Morillo and Guaso systems) shows an essentially gently folded layer-cake stratigraphy in the gently plunging open Buíl Syncline. In contrast, the Lower Hecho Group (Fosado, Los Molinos, Arro and Gerbe systems) underwent substantial shortening to be sheared, folded and thrust so that the western limb became locally overturned. We believe that this tectonic activity was directly linked with the incorporation of the Ainsa Basin into the Gavarnie thrust sheet as a thrust-top basin, synchronous with the growth of the Mediano Anticline. Such intense tectonism could have been associated with the stripping of sand from shallow-marine and coastal environments and the accumulation of sand in the deep basin.

Clockwise vertical axis rotation (CVAR) of 60–45° occurred for the Ainsa Basin from Early Lutetian to Late Bartonian when the folds and thrusts of the Ainsa Oblique Zone developed (Muñoz et al. 2013). In the Early Lutetian (c. 48 Ma), the Boltaña and Mediano anticlines were undeveloped as basin-bounding structures (Muñoz et al. 2013, figure 17). Palaeomagnetic data for the clockwise vertical-axis rotations of the Mediano and Boltaña anticlines show that after 47.5 Ma (coinciding with the fine-grained interfan sediments between the Gerbe I and Gerbe II sandy fans) they follow a decreasing exponential function with most of the rotations between 47.5–42.5 Ma (Muñoz et al. 2013, figure 14), i.e., between the Gerbe I and Guaso I systems (Upper Hecho Group). As argued above, we suggest that the beginning of this period of large-scale CVAR marks the time when the Ainsa Basin was converted from a foreland basin sensu stricto to a thrust-top (piggysback) basin as it was an integral part of the Gavarnie thrust sheet lubricated by the underlying weak evaporite horizons at the bottom of the detached Mesozoic and Paleogene successions (Muñoz et al. 2013). The large-scale CVAR would have been kinematically easier after the Ainsa Basin became a thrust-top basin. A second rotation event, Late Eocene–Oligocene in age, added a further 10° of CVAR (Muñoz et al. 2013).

Several studies suggest that fault displacements accumulate at relatively uniform rates over time periods between 20 kyr and 300 kyr whilst very high-frequency fault displacements (~<20 kyr) are highly variable (Nicol et al. 1997, 2005; Mouslopoulou et al. 2009). Clevis et al. (2003) used numerical modelling to study the effects of regular pulsating tectonic activity on basin drainage morphology. They simulated tectonic pulses of 200 kyr duration followed by periods of tectonic quiescence of the same duration. Their results showed a pattern of periodic stratigraphic alternation of prograding and retrograding alluvial-fan gravels. Periods of tectonic activity were associated with alluvial fan and coastline retreats and tectonically quiescent periods were associated with the cessation of flexural subidence, progradation of the alluvial fans and increased delivery of gravels to the basin. Clevis et al. (2003) suggested that coastal retreat during periods of tectonic uplift occurred because delta catchment yields were insufficient to fill the accommodation created by flexural subidence in response to tectonic loading.

The episodic (but likely aperiodic) tectonic uplift recognized in the Mediano Anticline (Holl and Anastasio 1993) could have resulted in intermittent delivery of coarse-grained sediment to the Ainsa Basin. The lag-time between tectonic uplift and delivery of coarse-grained material that was computer modelled by Clevis et al. (2003) suggested an order of tens to hundreds of thousands of years between the deposition of the sandy fans postulated to have occurred between periods of significant uplift (growth) of the Mediano Anticline. The numerical model of Clevis et al. (2003) also suggested that greater fault displacement rates resulted in higher
average SARs during decreased thrust activity. These tectonic processes could explain the high SARs observed during the deposition of the Arro and the Gerbe systems after the significant period of growth of the Mediano Anticline during chron C22r (Fig. 14). It was at that time that the Lower Hecho Group stratigraphy was intensely deformed to such an extent that the sandy fans and associated sediments were sheared and folded into large-scale recumbent folds prior to the accumulation of an essentially layer-cake stratigraphy observed for the Upper Hecho Group.

Various researchers have argued for both a dominant tectonic control and/or a mixed tectonic–climatic forcing to drive sediment supply in the Middle Eocene sediments of the Pyrenees. For example, Peper and de Boer (1995) applied a numerical model to the Tremp–Ager Basin to explain cyclical changes in sediment supply for coarse clastic flux in the deltaic parasequences as due to both climatic forcing and regular tectonic pulses. However, as has been true for many similar studies, the lack of a robust chronostratigraphic framework calls into question such interpretations.

In the Aínsa Basin, one might reasonably argue that both climate and tectonics influenced the accumulation of the sandy submarine fans. In the numerical modelling discussed above, Clevis et al. (2003) added small-scale (c. 20 m) sea-level variations controlled by 100 kyr Milankovitch eccentricity. The combination of tectonic and climatic variables resulted in a complex stratigraphic pattern. Although major progradation events associated with the tectonic pulses could still be recognized, the tectonic signal was clearly obscured by the high-frequency climatic sea-level fluctuations. The results of this numerical model are comparable temporally with the stratigraphic framework of the Aínsa Basin, although it is more likely that the tectonic growth pulses of the Mediano Anticline were more irregular than the input pulses in this numerical model. The initiation of the Aínsa fan systems could have resulted following major pulses of tectonic growth whilst some individual submarine fans, MTDs and smaller heterolithic packages may have been associated with small-scale climatic variations controlled by orbital cycles. Cyclic climatic processes responsible for the sediment packaging of the fine-grained successions are likely to have been locally obscured by aperiodic tectonic processes, such as the growth of the Mediano, Boltaña and Añisclo anticlines.

There is evidence of other growth anticlines within the Aínsa Basin that were active during the deposition of the sandy fans and they may have influenced stacking patterns and avulsion of the submarine fans. For example, Bayliss and Pickering (2015) discuss the growth of the Añisclo Anticline and its role in the deposition of the Banastón System fans. This growth could be considered as a tectonic control and a driver of autocyclic processes.

Autocyclic control on the deposition of the Aínsa Basin sandy fans

Autocyclic processes may produce repeating depositional cycles, and although some of these processes are intrinsic to the depositional system, they are commonly aperiodic (Cecil 2013). The cyclic but irregular nature of autogenic processes could be a possible mechanism for the irregular timing of the coarse-grained deposition of the Aínsa Basin. However, Pickering and Bayliss (2009) argue against an autocyclic control for the deposition of the Aínsa Basin sandy fans as the deposition and architecture of these fans cannot be explained by lateral switching and compensational stacking processes. The two main arguments cited against autocyclic are: (i) the westward shift of the sandy fans towards the foreland and away from the deformation front, explained by the differential growth of basin-bounding anticlines, and (ii) the switching on and off of coarse-grained sediment with thick intervals of interfan fine-grained deposits between sandy fans, implying an external forcing on the influx of coarse-grained sediment to the basin. Autocyclic processes, however, may still have played a role in controlling the distribution of sandy sediment at shorter temporal and spatial scales. Pickering and Corregidor (2005) recognized within the internal architecture of each submarine fan several cycles of erosional channel incision, sediment bypass and channel infill (backfill) that they attributed to possible autocyclics.

Conclusions

The first-order, long-term, control on the accommodation for the coarse-grained clastic sediments to the Aínsa Basin was both extrabasinal and intrabasinal tectonics (cf. Pickering and Bayliss 2009). The punctuated growth of the Mediano Anticline may have caused episodic reduction of accommodation on the shelf, leading to forced regressions and a concomitant increased flux of relatively coarse-grained sediments into the deep basin linked to sandy fan development. However, orbital tuning of gamma-ray-logged interfan and levee–overbank sections to the eccentricity curves, permitting the conversion of a depth-stratigraphy to an age-stratigraphy, suggests that, like the finer-grained sediments, the accumulation of at least several of the sandy fans likely had a strong climatic driver expressed by the 400 kyr eccentricity cycles, with fan growth tending to occur linked to eccentricity minima.

Our magnetostratigraphically calibrated chronostratigraphy for the sediments of the Upper Hecho Group (Gerbe, Banastón, Aínsa and the lower part of the Morillo System) allows the estimation of the age of initiation of the deep-marine systems and of individual sandy fans. The Gerbe System is estimated to have been initiated at 47.73 Ma, the Banastón System at 46.97 Ma and the Aínsa System at 45.16 Ma. Note that with tuning of our stratigraphic intervals using time-series analysis (this paper), there is a discrepancy between these ages and those presented in Cantalejo et al. (2020). These differences are too small to resolve biostratigraphically as they represent up to several hundred thousand years.

The interfan and levee–overbank deposits in the Aínsa Basin have already been shown to contain a strong Milankovitch cyclicity. Orbital parameters most likely paced the regular delivery of the fine-grained sediment mainly by river-derived (hyperpycnal) turbidity currents. Our time-series analysis of fine-grained stratigraphic
sections throughout the Aínsa Basin suggests that, irrespective of whether they represent interfan or channel–levée successions, they contain a similar archive of Milankovitch forcing. This conclusion emphasizes the incomplete record of the processes forcing coarse sediment flux into and through the channels. Most of the SFGs’ travelling through the submarine channels will have left no clear depositional record of their transit, other than in the levee–overbank deposits. The pacing of the coarse-grained submarine fans, however, cannot be entirely explained by climatic forcing.

Our results suggest that the apparently variable recurrence time and duration of each sandy submarine fan was complex and cannot support the simple hypothesis that the 400 kyr eccentricity cycles alone paced the delivery of all the coarse-grained material to the basin. The majority of sandy submarine fans, however, coincide with periods of long-eccentricity (400 kyr) minima, suggesting that many of these sandy fans may have been modulated by climate changes influenced by Milankovitch parameters. The most likely explanation is that an eustatic driver was responsible for the accumulation of most of the sandy submarine fans. At certain times in the evolution of the Aínsa Basin, tectonic processes appear to have exerted a more important control on sediment delivery towards the end of the Lower Hecho Group (Gerbe System). During this period, the Aínsa Basin was undergoing major structural reorganization, probably becoming a thrust-top (piggyback) basin in the Gavarnie thrust sheet. Finally, autocyclic processes may have caused internal reorganization of sediment within fan architecture (at the scale of individual channels and lobes) with many cycles of channel incision, sediment bypass and infill identified in each submarine fan succession: these processes alone cannot explain the sedimentary and stratigraphic architecture of the sandy fans in the basin.

Together with recognizing a strong climate signal at a range of Milankovitch scales for the fine-grained deep-marine clastic sediments in the Aínsa Basin, we also identify sub-Milankovitch climate signals as in the c. 41.5 Ma LLTM.

Our study is the first detailed study of a deep-marine basin where both the age model and data come from the same sediments, and that integrates these data with the entire stratigraphy over c. 8 Myr. This has led to a greater level of confidence in our results and conclusions. We have shown that climate change and eustasy were likely the principal drivers on the accumulation of many of the sandy submarine fans at a time when many researchers invoke a greenhouse world. However, we also show that the causal processes were complex and likely also involved some tectonic control, and probably hysteresis effects for the sediment flux. An important outcome from our results is that there remains a need for even higher-resolution climatic and eustatic data if we are to effectively deconvolve the causal processes on clastic sediment delivery to deep-marine basins. There remains a need to understand not only changing relative sea level, but also the amplitude–frequency and duration of such changes linked with the availability of coarse sediment for redeposition in sandy submarine fans.

Acknowledgements We would like to acknowledge D. Hodgson and an anonymous reviewer for their valuable comments and suggestions that helped to improve the structure and content of this manuscript.

Author contributions BCL: investigation (lead), methodology (lead), writing – original draft (lead), writing – review & editing (lead); BC: formal analysis (lead), investigation (lead), methodology (lead), writing – original draft (lead); KTP: supervision (equal), writing – review & editing (equal); KG: formal analysis (supporting), CMN: supervision (supporting), writing – review & editing (supporting).

Funding This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data availability All data generated or analysed during this study are included in this published article (and its supplementary information files)

Scientific editing by Adrian Hartley

References

Chasing the 400 kyr pacing of deep-marine fans

Dinarés-Turell, J., Baceta, J.I., Pujalte, V., Orue-Etxebarria, X., Bernaola, G. and

Cecil, C.B. 2013. An overview and interpretation of autocyclic and allocyclic

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Highstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.

Covault, J., Normark, W., Romans, B. and Graham, S. 2007. Hightstand fans in

Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L.
Chasing the 400 kyr pacing of deep-marine fans

Tan, J., Yang, M., Lye, W., Wilkins, R. and Shackford, K.J. 2013. Obliquity and long eccentricity pacing of the Middle Miocene climate transition. Geochemistry, Geophysics, Geosystems, 14, 1740–1755, https://doi.org/10.1002/ggge.20108

Weedon, G.P., Coe, A.L. and Gallois, R.W. 2004. Cyclostratigraphy, orbital tuning and inferred productivity for the type Kimmeridge clay (Late Jurassic),

