Continued meltwater influence on North Atlantic Deep Water instabilities during the early Holocene

ARTICLE in MARINE GEOLOGY · FEBRUARY 2015
Impact Factor: 2.2 · DOI: 10.1016/j.margeo.2014.11.015
Continued meltwater influence on North Atlantic Deep Water instabilities during the early Holocene

A.C. Elmore a,b,*, J.D. Wright a, J. Southon c

a Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, USA
b Department of Geography, Durham University, Durham, UK
c Earth System Science Department, University of California, Irvine, Irvine, CA, USA

A R T I C L E I N F O

Article history:
Received 2 March 2014
Received in revised form 26 November 2014
Accepted 30 November 2014
Available online 5 December 2014

Keywords:
Holocene
meltwater
North Atlantic

A B S T R A C T

The transition into the Holocene marks the last large, orbitally derived climatic event and ultimately led to the onset of modern oceanic conditions. The influence of this climatic change on North Atlantic Deep Water (NADW) formation and circulation remains ambiguous. High-resolution records from southern Gardar Drift, south of Iceland, show abrupt decreases in benthic foraminiferal δ18O values at discrete intervals during the early Holocene, suggesting that NADW shoaled episodically. Intervals of lower δ18O values are coincident with higher Δδ13C values at discrete intervals during the early Holocene and high abundance of lithic grains/g, indicating that these periods also had enhanced surface water stratification, due to increased meltwater in the circum-North Atlantic region. Our new high-resolution planktonic and benthic foraminiferal stable isotopic data show that increased meltwater delivery led to brief reorganizations of deepwater currents. These southern Gardar surface and deep water records indicate that the early Holocene was a period of multiple abrupt climatic events that were propagated to the North Atlantic during the final break up of ice sheets in the Northern Hemisphere, and suggest that some component of the residual early Holocene sea level rise can be attributed to Northern Hemispheric sources.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the circum-North Atlantic region, the onset of the Holocene (~11.7 ka; Steffensen et al., 2008; Walker et al., 2009) marks the end of the transition from the last glacial period to current interglacial conditions (Broecker et al., 1989). Greenland ice core δ18O records show that the Holocene was a warmer, less dusty period with decreased climatic variability, compared to the last glacial (Grootes et al., 1993; Alley et al., 1995). Similarly, geologic evidence from oceanic sediment cores (Broecker et al., 1989) and terrestrial records (Atkinson et al., 1997; Dansgaard et al., in press; Davis et al., 2003) from around the North Atlantic prescribe the Holocene as a period with warm temperatures and without large-scale climatic changes. The Holocene Thermal Maximum, caused by peak insolation ranging from 11 to 6 ka, depending on geographic location, and was less than 2 °C warmer than the Holocene baseline temperature in most locations (Kaufman et al., 2004; Renssen et al., 2012). Despite relative climatic stability, an estimated 30 m of lingering deglacial sea level rise occurred throughout the early Holocene, from 11.7 ka until at least ~8.0 ka (Fairbanks, 1989; Peltier and Fairbanks, 2006; Bard et al., 2010; Deschamps et al., 2012), attributed to freshwater delivery from the melting ice sheets (Andrews and Dunhill, 2004; Tornqvist and Hijma, 2012; Seidenkrantz et al., 2013). This evidence suggests that episodic or continual meltwater has been released from the Northern Hemisphere ice sheets, and may have affected North Atlantic ocean hydrography/circulation during the early Holocene.

Recent, higher-resolution examinations have demonstrated that Holocene climate is more variable than previously thought (e.g. Bond et al., 1997; Bianchi and McCave, 1999; Hoogakker et al., 2011; Larsen et al., 2012; Walker et al., 2012; Miller and Chapman, 2013), and have identified abrupt climate events within this purportedly stable interglacial period that have affected the deep ocean, as well as the more variable surface ocean (Alley et al., 1997; Marcolli et al., 2013). Perhaps the most discussed of these is termed the ‘8.2 ka Event’ (Alley et al., 1997; Rohling and Pälike, 2005; Cronin et al., 2007; Born and Levermann, 2010; Young et al., 2012; Liu et al., 2013), a climatic cooling caused by North Atlantic surface water freshening (Ellison et al., 2006) that has been attributed to meltwater release from glacial Lake Aggasiz (Barber et al., 1999; Hillaire-Marcel et al., 2007; Tornqvist and Hijma, 2012). This meltwater event delivered freshwater into the North Atlantic region, and may have disrupted thermohaline circulation (Renssen et al., 2001) and decreased NADW formation (Ellison et al., 2006; Kleiven et al., 2008), despite some evidence for faster Iceland–Scotland Overflow (Bianchi and McCave, 1999). This proposed mechanism for the 8.2 ka Event is similar to a proposed mechanism for Younger Dryas cooling, wherein Broecker et al. (1989) suggested that a ‘fresh water
cap in the northern North Atlantic would have altered deepwater formation for the duration of the Younger Dryas (Clark et al., 2001; McManus et al., 2004; Tarasov and Peltier, 2005; Elmore and Wright, 2011) and during Heinrich Events (Vidal et al., 1997). However, other mechanisms have also been proposed to explain the Younger Dryas cold period, including changing atmospheric circulation (Wunsch, 2006; Brauer et al., 2008) and extraterrestrial impact (Firestone et al., 2007; Melott et al., 2010).

In addition to the 8.2 ka Event, other studies have presented evidence from oceanic sediment cores for meltwater-driven abrupt climatic events that may have perturbed deep ocean circulation patterns at 9.5 ka (Keigwin et al., 2004), 9.3 ka (Yu et al., 2010), 9.2 ka (Fleitmann et al., 2008, and references therein), 8.6 ka (Henderson, 2009), 8.4 ka (Kleiven et al., 2008), 8.2 ka (Booth et al., 2005; Menounos et al., 2008), 2.7 ka (Hall et al., 2004), and the Little Ice Age (1500–1900 AD; Bradley and Jones, 1993; Dahl-Jensen et al., 1998). While the evidence for these events has similarities in common with the sediment core records through the 8.2 ka Event and the Younger Dryas, they are less frequently observed in oceanic records and have yet to be directly tied to meltwater delivery routes.

Here, we present high-resolution proxy records of surface and deepwater environmental conditions from the northern North Atlantic to test the hypothesis that episodic surface water freshenings altered deepwater circulation patterns during the early Holocene. Records of proxies for surface water temperature (planktonic foraminiferal assemblage and δ18O values), surface water stratification (∆δ18O, pachyderma (s)–G. bulloides, calculated from the difference between δ18O, G. bulloides, and δ18O, pachyderma (s)), ice rafted debris (IRD; quantity of lithic grains (g)), bottom water temperature (δ18O benthic foraminifera), and deep ocean circulation (δ13C benthic foraminifera) are used to compare surface water hydrography with NADW variations during the critical Holocene interval.

2. Methods

2.1. Site information and sample processing

Surface ocean currents bring warm, salty surface water to the north-east North Atlantic via the North Atlantic Current, which bifurcates toward western Europe and the Nordic Seas, passing between the North Atlantic subpolar and subtropical gyres (Fig. 1; Hansen and Østerhus, 2000). The surface waters cool and sink in the Nordic Seas, returning to the North Atlantic as Iceland–Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW; Worthington, 1976; Fig. 1). The contributions of ISOW and DSOW are related to surface temperature and salinity in the Nordic Seas (Dylessy et al., 1988), as well as to surface inflow (Thornalley et al., 2009) controlled by the position and strength of North Atlantic gyres (Hansen and Østerhus, 2000), sill depth (Millo et al., 2006), sea ice cover (Pirin et al., 2001; Raymo et al., 2004), and tectonics (Wright and Miller, 1996). Thus, researchers have suggested that overflow strength has varied on geologic, orbital, decadal and inter-annual timescales (Dylessy et al., 1988; Oppo et al., 1995; Dokken and Hald, 1996; Wright and Miller, 1996; Bianchi and McCave, 1999; McManus et al., 1999; Turrell et al., 1999; Dickson et al., 2002; Raymo et al., 2004) Modern NADW is produced by the interplay between ISOW, DSOW, Antarctic Bottom Water (AAWB), Labrador Sea Water, and Mediterranean Outflow Water (Mann, 1969; Worthington, 1976; Fig. 1). Due to their similar though complicated formation pathways, ISOW and DSOW export may co-vary or may have an inverse relationship (i.e. increased ISOW occurs at the expense of decreased DSOW); however this study has scope only to address the ISOW component.

Jumbo piston core 11JPC was collected by the R/V Knorr on cruise 166, leg 14, from 2707 m water depth on Gardar Drift (56°14′N, 27°39′W) in the eastern North Atlantic (Fig. 1; Table 1). ISOW, the largest eastern source of modern North Atlantic Deepwater, bathes this site (Worthington, 1976; Bianchi and McCave, 1999). High sedimentation rates (~18 cm/kyr) offer high temporal resolution throughout the Holocene (Fig. 2).

The top 222 cm of core 11JPC was sampled at 1 cm intervals to study changes in surface water hydrography during the Holocene and Younger Dryas, yielding a sampling resolution of ~58 years per sample (Elmore and Wright, 2011). The >150 μm fraction of each sample was split using a microsplitter into an aliquot containing at least 300 planktonic foraminifera (Imbrie and Kipp, 1971). Abundances of the planktonic foraminiferal species were determined by manual counting. The three most common taxa were left-coiling Neogloboquadriga pachyderma (sinistral; s), right-coiling N. pachyderma (dextral; d), and Globigerina bulloides. Planktonic foraminiferal assemblage results are reported as percent, with respect to the total planktonic foraminiferal assemblage. The polar biogeographic region is dominated by N. pachyderma (s), thus % N. pachyderma (s) has been used as an indicator of relative temperature changes for polar to subpolar regions (Bé and Tolderlund, 1971; Bé, 1977).

Up to 15 tests of each of the planktonic foraminifera species N. pachyderma (s) and G. bulloides were selected using a binocular microscope from the 250 to 350 μm size fraction of each sample and analyzed for stable isotopic composition on an Optima Mass Spectrometer at Rutgers University (-1-σ laboratory precision of an internal lab standard was 0.08‰ for δ18O and 0.05‰ for δ13C). The differences (∆δ13C, pachyderma (s)–G. bulloides) between the δ13C values of the surface-dwelling G. bulloides and thermocline-dwelling N. pachyderma (s) were then calculated for each sample to determine the differences in calcification environment driven by the depth habitat preference of each species, as defined by Lagerklint and Wright (1999). Since these two species have been selected out of the same samples, global changes in δ18O driven by ice volume and/or any regional changes in δ18Osea water would not affect the ∆δ18O difference as both species would record these effects contemporaneously (Lagerklint and Wright, 1999).
In addition to having differing depth habitats, *N. pachyderma* (s) and *G. bulloides* may have seasonal preferences that could bias Δδ¹⁸O *pachyderma* (s)–*G. bulloides* values, however Fraile et al. (2009) demonstrate that both species used in this reconstruction preferentially reflect summer temperatures in the North Atlantic region. Additionally, the Greenland ice core δ¹³C data do not show large-scale changes in seasonality throughout the Holocene (e.g., Steffensen et al., 2008), so any interspecies differences in the timing of calcification within the year are not expected to affect our multi-decadal time-averaged Δδ¹³O, *pachyderma* (s)–*G. bulloides* record. Thus, the Δδ¹³O *pachyderma* (s)–*G. bulloides*, difference between *N. pachyderma* (s) and *G. bulloides* is hereafter used to reflect variations in vertical stratification caused by fresh water inputs (Lagerklint and Wright, 1999; Pak and Kennett, 2002).

The number of lithic grains (>150 µm) per gram of dried sediment was counted as a proxy for ice-rafted detritus (IRD; Bond and Lotti, 1995). The location of 11JPC is too far from terrestrial sources to have a large quantity of lithic grains transported to the site by means other than ice rafting (e.g., Bond and Lotti, 1995).

Deepwater variations were reconstructed by measuring downcore benthic foraminiferal δ¹³C values. Up to 5 tests of the benthic foraminifera *Planulina wuellerstorfi* were selected from the 250 to 350 µm size fraction and analyzed for stable oxygen and carbon isotopic composition (see above). Differences between the δ¹³C value of bottom waters in the North Atlantic and the South Atlantic (~1‰ and ~0.4‰, respectively in the modern oceans; Kroopnick, 1980), which are recorded in epibenthic foraminifera, allow for the use of benthic foraminiferal δ¹³C as a water mass tracer (e.g., Belanger et al., 1981; Graham et al., 1981). Only *P. wuellerstorfi* tests were chosen for analysis since some *Gibbicidoides* taxa (e.g., *C. robertsonianus*) do not record equilibrium values and may be up to 1‰ lower in δ¹³C values (Elmore, 2009). In addition to reflecting changes in water mass mixing, benthic foraminiferal δ¹³C records can be complicated by changes in productivity and remineralization (Mackensen et al., 1993, 2001); these complicating factors are evaluated in the discussion section below.

2.2. Age model

Fifteen AMS ¹⁴C ages constrain the age model for 11JPC (Fig. 2), which was previously presented in Elmore and Wright (2011). For each AMS ¹⁴C analysis, 4–6 mg of planktonic foraminifera *G. bulloides* were selected using a binocular microscope and sonicated in deionized water. Samples were then analyzed at the Keck Center for Accelerator Mass Spectrometry at the University of California, Irvine. The resulting radiocarbon ages were converted to calendar ages according to the Fairbanks0805 calibration, after a standard 400-year reservoir correction was applied, which likely represents the minimum reservoir correction for the region (Fairbanks et al., 2005; Fig. 2). The Younger Dyas termination at 183 cm, as defined by % *N. pachyderma* (s) and δ¹⁸O of *N. pachyderma* (s), was used as additional chrono-stratigraphic tie point (Alley et al., 1995; Ellison et al., 2006; Elmore and Wright, 2011) and defined as 11.7 ka (Walker et al., 2012); this represents a slight change from the original age model in Elmore and Wright (2011), wherein the end of the Younger Dyas was defined as 11.5 ka. AMS dates at 145 and 149 cm were not included in the age model because they produced slight age reversals (Fig. 2). According to the age model for 11JPC and the subdivisions of the Holocene Epoch according to Walker et al. (2012), the early Holocene (11.7–8.2 ka) is recorded in sediments from 183 to 141 cm; the middle Holocene (8.2–4.2 ka) is recorded in sediments from 140 to 72 cm; and the late Holocene (4.2 ka – present) is recorded in sediments from 71 to 0 cm (Fig. 2).

3. Results

3.1. Surface water results

The top 222 cm of the core is divided into two chronozones based on the age model (Fig. 2). The Younger Dryas (12.9–11.7 ka) section is from 222 to 184 cm, and is discussed in detail in Elmore and Wright (2011) and the Holocene section (11.7 ka – present) is from 183 cm to the top of the core (~0.7 ka). The Younger Dryas section of the core is dominated by polar planktonic foraminiferal δ¹³C values (~4–60%), and higher planktonic δ¹⁸O values (2.0–3.5‰ and 2.0–2.5‰, respectively), indicating colder temperatures during the Younger Dyas than during the Holocene at 11JPC (Fig. 3A & B). The Younger Dyas to early Holocene changes in δ¹⁸O* N. pachyderma* (s) and δ¹⁸O* G. bulloides* values are ~1.4‰ and ~2.6‰, respectively; these changes cannot be solely explained by the change in δ¹⁸O*sea water* driven by continental ice volume since sea level rises less than 70 m through this interval (Peltier and Fairbanks, 2006), equating to a ~0.77‰ change in δ¹⁸O*sea water* according the relationship described by Shackleton (1974). While the residual change in δ¹⁸O from the Younger Dyas to the Holocene, excluding ice volume effects, does include some localized salinity effects (supported by observed evidence for IRD during this interval), the general trends are too large to be accounted for by salinity changes alone, and therefore must represent some change in temperature.
The early Holocene (~11.7–8.2 ka) section in core 11JPC is found between ~183 and 141 cm (Fig. 2). A decrease in % *N. pachyderma* (s) and a correspondingly large increase in % *G. bulloides* is observed in the early Holocene transitional section (Fig. 2), indicating a change from polar to subpolar conditions (Fig. 3A). *N. pachyderma* (s) δ18O and δ18O_{G. bulloides} values also decrease across this transitional section (Fig. 3B). Superimposed on the decreasing trend of the early Holocene, abrupt and episodic changes in δ18O_{N. pachyderma} (s) are an obvious feature of the record (Fig. 3B). Lithic grain abundances decrease abruptly across the Younger Dryas–Holocene boundary (~11.7 ka) but some lithic grain inputs are continually observed throughout the early Holocene (Fig. 4D).

In the middle Holocene (8.2–4.2 ka), the abundance of the polar species, *N. pachyderma* (s) is typically less than 3% (Fig. 3A). The abundances of sub-polar species *G. bulloides* and right coiling *N. pachyderma* (d) are ~50% and ~20%, respectively, indicating that the sub-polar waters gradually replaced the polar conditions of the Younger Dryas during the early Holocene chronozones (Fig. 3A). This foraminiferal abundance shift ushered in the modern assemblage, which persisted throughout the remainder of the Holocene (Fig. 3A). *N. pachyderma* (s) δ18O values decrease from ~2.8 to 1.7‰ in the early Holocene chronozones and are low (~1.7–1.4‰), with limited variability, in the middle and late Holocene section (Fig. 3B). *G. bulloides* δ18O values are also low and steady (~1.2–1.8‰) throughout the Holocene chronozones, indicating relatively warm surface temperatures (Fig. 3B). The abundance of lithic grains per gram is low overall in the middle and late Holocene, with an average value of 8 grains/g, but small, episodic peaks are recorded (Fig. 4D).

3.2. Deepwater results

Deepwater temperature and circulation proxies show variations between Younger Dryas and Holocene conditions at site 11JPC (Fig. 3). Benthic foraminiferal δ18O decreases from ~3.5 to 2.9‰ through the Younger Dryas and early Holocene sections, similar to the expected global signature from ice volume change outlined above, indicating that bottomwater did not warm significantly through the interval (Fig. 3C). Similarly, δ18O_{P. wuellerstorfi} values remain fairly constant through the Holocene section, indicating a stable deep ocean temperature, without higher frequency variations (Fig. 3C).

The Younger Dryas chronozones are typified by low δ13C_{P. wuellerstorfi} values at the beginning and end of the chronozones, with distinct abrupt minima of ~0.4‰ (Fig. 3C; Elmore and Wright, 2011). *P. wuellerstorfi* δ13C values increase generally through the early Holocene chronozones, to a mid-Holocene maxima value of ~1.3‰ at ~7.0 ka. Short-lived minima in δ13C_{P. wuellerstorfi} are superimposed on this early Holocene increase, with values ~0.6‰, suggesting abrupt circulation changes in the North Atlantic (Figs. 3C; 4E). A long-term decreasing trend in δ13C_{P. wuellerstorfi} values is then observed from ~5 ka to the top of the record at ~0.7 ka, without abrupt variations (Figs. 3C;4E).

4. Discussion

The early Holocene section of core 11JPC is typified by generally decreasing values of δ18O_{G. bulloides}, δ18O_{N. pachyderma} (s), δ18O_{P. wuellerstorfi}, and decreasing % *N. pachyderma* (s), all of which indicate a warming trend from 11.7 to 8.2 ka (Fig. 3A; B; C). Early Holocene Δδ18O_{N. pachyderma} (s)–*G. bulloides* Values also show a generalized decreasing trend, with numerous abrupt variations (to ~0.5‰, Fig. 4C), indicating episodic increases in upper ocean stratification driven by meltwater, overlying a trend toward decreasing stratification into the mid-Holocene. Lithics per gram show a general decrease through the early Holocene (to <10 lithics/g; Fig. 4D), indicating that some proximal IRD occurred throughout the warming period of the early Holocene, but disappeared by the mid-Holocene. Interestingly, the IRD record (Fig. 4D)
et al., 1993) may complicate interpretations of benthic foraminiferal δ13C in terms of circulation changes, however, benthic foraminiferal δ13C has been routinely interpreted to reflect circulation in this region (e.g., Hall et al., 2004; Thorndyke et al., 2009, 2010; Elmore and Wright, 2011; Hoogakker et al., 2011), supporting our use of δ13C, *P. wuellerstorfi* as a watermass tracer. Additionally, our interpretations of circulation changes are consistent with reconstructions using sortable silt grain size, an inorganic proxy for flow speed, which also shows abrupt variations in circulation during the early Holocene (Bianchi and McCave, 1999; Hoogakker et al., 2011). The observed changes in δ13C, *P. wuellerstorfi* from 11JPC cannot be explained by changes in source region, since records of δ13C from sites bathed by Norwegian Sea Deep Water, a formation region for ISOW, do not show similarities in trend with 11JPC or other records from the Northeast North Atlantic (e.g., Hoogakker et al., 2011; Hall et al., 2004; Fig. 4E). As shown in Fig. 4E, the shallower site NEAP 4K (Hall et al., 2004) records δ13C, *P. wuellerstorfi* values that are equal to or higher than 11JPC δ13C, *P. wuellerstorfi* through the entire interval 10–0 ka, with the exception of the lowest point in the NEAP 4K record at ~9.6 ka; this indicates that the Northern Source endmember, ISOW, is not driving the decreases in δ13C, *P. wuellerstorfi* at 11JPC. Rather, episodic decreases in δ13C, *P. wuellerstorfi* at 11JPC record values that are more similar to down-stream NADW site JPC37 (Hagen and Keigwin, 2002), suggesting a greater southern source influence on benthic δ13C during these episodic periods from 13 to 8 ka (Fig. 4E).

Early Holocene episodic meltwater pulses (Seidenkranz et al., 2013) coincident with NADW circulation fluctuations can be explained by the residual melting of northern hemisphere ice sheets, which contributed to the ~30 m sea level rise during the early Holocene (Peltier and Fairbanks, 2006; Fig. 4A). The final collapse of the Northern Hemisphere ice sheets would have subsequently provided fresh meltwater to the surface of the North Atlantic, which could have then changed the density of NADW, affecting the depth to which this water mass penetrated. This is consistent with the idea that early Holocene was an unstable period and that the full interglacial period began well after 9 ka, coincident with the maximum flux of NADW (Henderson, 2009).

Climate events at 8.2 ka (Alley et al., 1997; Rohling and Pälike, 2005; Hald et al., 2007), 8.4 ka (Kleiven et al., 2008), and 8.6 ka (Henderson, 2009) have all been attributed to freshwater pulse(s) from Glacial Lake Agassiz, and proposed to have altered deepwater circulation patterns (Kleiven et al., 2008; Henderson, 2009); given the uncertainties in individual chronologies, these ‘events’ could all be part of the same meltwater event or could represent a series of meltwater events. The record of δ18O *N. pachyderma* from 11JPC suggests a slight cooling ~8.4 ka; however, the cooling is not seen in records of δ18O of *G. bulloides* or *P. wuellerstorfi* (s; Fig. 4). This is consistent with the idea that early Holocene was an unstable period and that the full interglacial period began well after 9 ka, coincident with the maximum flux of NADW (Henderson, 2009).

Values of δ13C, *P. wuellerstorfi* from 11JPC also show high variability superimposed on a general increasing trend during the early Holocene; lows in δ13C, *P. wuellerstorfi* are highlighted by red arrows in Fig. 4E and are larger than the analytical uncertainty of 0.05‰. If the δ13C, *P. wuellerstorfi* values are higher during the period from 9 to 8 ka, indicating an increase in meltwater occurrence during that interval (Fig. 4C). During the period from 9 to 8.2 ka, the record of δ13C, *P. wuellerstorfi* has several minima that could be perceived to represent abrupt changes in circulation, however δ13C, *P. wuellerstorfi* values are generally low during the period from 9 to 8.2 ka, and thus it is difficult to decipher individual events from variability within the record (Fig. 4E).

The mid-Holocene, from ~8.2 to 4.2 ka, is characterized by slightly warmer surface temperatures according to records of δ18O, *N. pachyderma* and δ13C, *G. bulloides* (s) (Fig. 3B). The δ18O, *N. pachyderma* (s)–*G. bulloides* values are higher during the period from 9 to 8 ka, indicating an increase in meltwater occurrence during that interval (Fig. 4C). During the period from 9 to 8.2 ka, the record of δ13C, *P. wuellerstorfi* is more similar to down-stream NADW site JPC37 (Hagen and Keigwin, 2002), suggesting a greater southern source influence on benthic δ13C during these episodic periods from 13 to 8 ka (Fig. 4C).

Values of δ13C, *P. wuellerstorfi* from 11JPC suggest that abrupt circulation changes occurred within a longer-term increase in the export of northern-sourced water (Fig. 4E). Similar trends in variable early Holocene benthic foraminiferal δ13C can also be seen from sites around the North Atlantic, including at Blake Outer Ridge (JPC37; Hagen and Keigwin, 2002; Evans and Hall, 2008; Figs. 4E; Table 1). Air–sea exchange, preformed nutrients, and localized micro-environments (Mackensen

Fig. 4. Proxy records from core 11JPC shown versus age from 13.5 ka to present plotted with (A) generalized sea level record for post-deglaciation (blue; after Peltier and Fairbanks, 2006), (B) the δ18O record from Greenland ice core, GISP2 (green; Stuiver et al., 1995), (C) 11JPC Δδ18O in bivalves–N. pachyderma (s) (purple x), (D) 11JPC Lithics/g (brown diamonds), (E) 11JPC δ13C, *P. wuellerstorfi* (black open circles), NEAP 4K δ13C, *P. wuellerstorfi* (gray; Hall et al., 2004), and JPC37 δ13C, *P. wuellerstorfi* (red; Hagen and Keigwin, 2002). The vertical red arrows signify times of decreased δ13C, *P. wuellerstorfi* at 11JPC, suggesting more southern-sourced waters due to decreased northern-sourced deep water formation.
of DSOW or LSW) or southern intrusion to the downstream site, JC37. This indicates that the warmest period of the Holocene, including the Holocene Thermal Maximum, was a period of vigorous deepwater flow, consistent with previous research (Davis, 1984; Davis et al., 2003; Kaufman et al., 2004; Henderson, 2009).

During the late Holocene, from 4.2 ka to present, surface seawater temperatures remain warm, indicated by low \(\delta^{18}O_P \) values. This is consistent with previous research (Davis et al., 2003; Kaufman et al., 2004; Henderson, 2009). The period of high surface temperatures during the late Holocene is also reflected in the lower values of \(\delta^{18}O_P \) observed in the core from JC37. These low values are consistent with the presence of cold water masses, possibly associated with the North Atlantic Current (Hall et al., 2004). The presence of cold water masses is also reflected in the lower values of the benthic foraminifer \(G. \\

5. Conclusions

High-resolution records from the southern Gardar Drift show evidence for multiple meltwater events and associated deepwater circulation perturbations during the early Holocene. The \(\Delta \delta^{18}O_P \) values are indicative of the high surface temperatures during the late Holocene. The presence of cold water masses is also reflected in the lower values of the benthic foraminifer \(G. \\

Acknowledgments

We would like to thank E. McClymont, J. McManus, K. Miller, G. Mountain, D. Thornalley, L. Neitzke, S. Henderson, R. Mortlock, and Y. Rosenthal for their helpful discussions and comments on earlier versions of this manuscript, and Kraig Wray for analytical assistance. The comments from the Editor, Gert De Lange, and 2 anonymous reviewers greatly improved this manuscript. This research was supported by the National Science Foundation grant OCE-0095219 to J. D. Wright. Data from this study has been archived at http://www.nccdc.noaa.gov/paleo/study/17536.

References

Elmore, A.C., 2009. Late Pleistocene changes in northern component water: inferences from palaeoclimatic and palaeoceanographic records from Garðar Drift. (Ph.D. Dissertation), Rutgers University (225 pages).

Firestone, R.B., et al., 2007. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. PNAS 104 (41), 16016–16021.

series/epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the subcommission on Quaternary stratigraphy (International Commission on Stratigraphy). Journal of Quaternary Science 27 (7), 649–659.

