Miocene stable isotopic stratigraphy and magnetostratigraphy of Buff Bay, Jamaica

KENNETH G. MILLER Department of Geological Sciences, Rutgers University, Piscataway, New Jersey 08855 and Lamont-Doherty Earth Observatory, Palisades, New York 10964
JAMES D. WRIGHT Lamont-Doherty Earth Observatory, Palisades, New York 10964
MICKEY C. VAN FOSSEN Department of Geological Sciences, Rutgers University, Piscataway, New Jersey 08855
DENNIS V. KENT Lamont-Doherty Earth Observatory, Palisades, New York 10964

ABSTRACT

Previously reported biostratigraphic relationships from middle-upper Miocene sections exposed near Buff Bay, Jamaica (18°N, tropical bioprovince), differ from the subtropical North Atlantic (Sites 563 and 558). Time scales for this interval rely on correlations established at these subtropical sites, and the differences with the tropical section have implications to global correlations. Planktonic foraminiferal Zones N13 and N15 are thick at Buff Bay but are virtually absent at Sites 563 and 558; nanofossil Zone NN9 is associated with Zone N15 and uppermost Zone N14 at Buff Bay but is associated with Zone N16 at the other sites. Magnetostratigraphic data presented here further complicate the interpretation: Zone NN9 is associated with a thick normal magnetozone at Sites 563 and 558; at Buff Bay, it is associated with a thick reversed magnetozone. Although a secondary magnetization at Buff Bay makes it difficult to identify confidently Miocene normal magnetozones, the thick reversed magnetozone most likely represents the paleomagnetic field and correlates with Chron C5r. The magnetostratigraphic relationships require either diachrony of taxa or two mutually exclusive hiatuses in Jamaica and the North Atlantic.

We address this problem by analyzing benthic foraminiferal δ¹⁸O and δ¹³C from the Buff Bay section. These isotopic data allow us to evaluate three hypotheses that reconcile the magneto-, bio-, and isotopic stratigraphic data and conclude that the first and last occurrences of five taxa were diachronous by ~0.3–0.5 m.y. between tropical and subtropical locations. This requires revised age estimates for late middle to early late Miocene biostratigraphic datum levels. We suggest that the ranges of several taxa are useful for endemic tropical or subtropical zonations, but correlations between the low and midlatitudes were affected by an increase in latitudinal thermal gradients during the late middle Miocene. However, we admit that further studies are needed before this issue is resolved.

INTRODUCTION

Neogene Correlations

Neogene chronologic resolution has been greatly improved in the past decade because of two major advances. The first is the integration of multiple microfossil biostratigraphic zonations, isotopic stratigraphy, and magnetostratigraphy (for example, Berggren and others, 1985; Miller and others, 1985; Wright and Miller, 1992), providing first-order correlations of fossils and isotopic variations to the geomagnetic polarity time scale (GPTS). These calibrations provide independent means of evaluating biostratigraphic problems and of testing the time scale as new correlations are established. The second advance is the application of astronomical tuning to the Plio-Pleistocene record (for example, Imbrie and others, 1984; Shackleton and others, 1990). The use of orbital tuning provides a very accurate time scale (~5 k.y. resolution; Imbrie and others, 1984). Recent efforts have begun to extend the orbital time scale to the Miocene (for example, Hilgen, 1991; Shackleton and others, in press). Such efforts require a relatively precise magnetostratigraphic framework against which the astronomical tuning can be applied (for example, Hilgen, 1991).

Although Neogene stratigraphic resolution has been greatly improved, there are a few intervals where stratigraphic problems cause large uncertainties in correlations. A good example is provided by the late middle to early late Miocene discussed in this paper. Time scales developed over the past 20 yr (Fig. 1) show differences of 1–2 m.y. for this interval among foraminiferal zones, nanofossil zones, magnetochrons, and numerical ages. There are four reasons why such large (up to 22%) discrepancies occur and still plague stratigraphic correlations:

(1) Relationships between foraminiferal and nanofossil zonations have varied among publications (for example, Fig. 1); this is due not only to varying taxonomic and stratigraphic interpretations, but also to diachronous and geographically restricted ranges. Our results from Jamaica directly address the problem of diachrony of ranges for this interval.

(2) Relationships between magnetozones established in piston cores ("Epochs" 9–12 of Foster and Opdyke, 1970; Ryan and others, 1974) and chronrs developed from sea-floor spreading anomalies (for example, Heirtzler and others, 1968; LaBrecque and others, 1977; Berggren and others, 1985; Cance and Kent, 1992) have been controversial. This is particularly relevant to the late middle Miocene interval discussed here (Fig. 1). Foster and Opdyke (1970) first correlated late Miocene "Epoch" 11 with marine magnetic Anomaly 5 (= Chron C5r of the GPTS). In contrast, Ryan and others (1974) suggested that "Epoch" 9 was correlated with Anomaly 5. Miller and others

Data Repository item 9449 contains additional material related to this article.

Figure 1. Comparison of time scales for the late middle to early late Miocene illustrating the variable position of Zone NN9 (light stipple) to planktonic foraminiferal Zone N16 (heavy stipple) and the GPTS (black normal, white reversed). Modified after Miller and Kent (1987). References: Berggren and Van Couvering (1974) based on biochronology; Barron and others (1985) based on second-order magnetobiostratigraphic correlations and assuming that “Epoch” 9 is equivalent to Chron C5n; Haq and others (1987) based on second-order magnetobiostratigraphic correlations in this time interval; Berggren and others (1985) based on first-order magnetobiostratigraphic correlations of Miller and others (1985b); Cande and Kent (1992) based on magnetochnology.

Note the changing position of nannofossil and foraminiferal zonal boundaries, the differences between 9-5 versus 9-11 magnetochnology, and the relationships to the most recent GPTS of CK92.

(1985) used biostratigraphic relations at North Atlantic subropical Site 563 to suggest that “Epoch” 11 at piston core RC12-65 (Foster and Opdyke, 1970 and Ryan and others, 1974) correlates with Anomaly 5. This results in a difference of ~1-2 m.y. between time scales based on “9-5” versus “9-11” correlations (Fig. 1), but this recombination may not be valid if the Site 563 record has hiatus in Chron C5n as suggested by Aubry (1993).

(3) Numerical calibrations of the GPTS have varied. This accounts for <1 m.y. of discrepancies among time scales (Fig. 1) but cannot account for biostratigraphic problems discussed here.

(4) Correlations of the unit stratotype Tortonian (lower upper Miocene) are uncertain because it is not suitable for detailed magnetobiostratigraphic studies, and there is a large gap between the base of the Tortonian (= base of the upper Miocene) and the top of the Serravalian unit stratotype (= upper middle Miocene) (references in Berggren and others, 1985).

We believed that efforts in the mid-1980s (summary in Berggren and others, 1985) had solved some of the problems with this vexing interval. However, we were concerned because the only first-order correlations between bio- and magnetostatigraphy for this interval that were used in the Berggren and others (1985) time scale were developed at midlatitude (subtropical) Sites 563 (33°N) and 558 (38°N) (Miller and others, 1985) and portions of the middle Miocene magnetostatigraphic record at these sites are uncertain. Subsequent magnetobiostratigraphic correlations have been derived primarily from higher-latitude sites (for example, Site 608, 43°N; Miller and others, 1991, and Gartner, 1991; Site 748, Berggren, 1992) or have suffered from inadequate magnetostatigraphy (Site 588; Barton and Bloemendal, 1986; see below for discussion). Magnetostatigraphic records at tropical Ocean Drilling Program (ODP) locations (for example, Legs 108, 115, and 130) have been poor (Ruddiman, Sarthein, and others, 1989; Duncan, Backman, and others, 1990; Kroeneke, Berger, and others, 1993). Therefore, we sought a tropical outcrop section for magnetobiostratigraphic studies because meaningful polarity histories cannot be determined from most low-latitude cores, which are usually unoriented in the azimuthal plane.
The Buff Bay Section and the Jamaican Conundrum

In 1987, a joint field excursion from Unocal (G. Jones, R. C. Tjalsma, and C. Stuart), Woods Hole Oceanographic Institution (W. A. Berggren), University of Lyon (M.-P. Aubry), and Lamont-Doherty Earth Observatory (D. V. Kent, K. G. Miller, M. Van Fossen) sampled sections exposed by roadcuts near Buff Bay, Jamaica (Fig. 2). Previous studies reported on planktonic foraminiferal (Berggren, 1993), nannofossil (Aubry, 1993), and benthic foraminiferal (Katz and Miller, 1993) results. Roadcuts at Buff Bay exposed six sections sampled by the joint field party in 1987: Lower (Pots and Pans), Middle, Main, Slide, Dead Goat Gully, and West (Fig. 2). The Lower and West sections proved to be unsuitable for isotopic and magnetostratigraphic studies and are not discussed here.

The Middle section (Fig. 2) represents the upper Spring Garden Member of the Montpelier Formation as defined by Robinson (1969). The Main, Slide, and Dead Goat Gully roadcuts represent the Buff Bay Formation as originally defined by Robinson (1969). The general lithologies were similar to those described previously (Robinson, 1969), although closer examination of the lithology of the Main section resulted in the relocation of the formational boundary by the field party. The Spring Garden Member is a pure, white indurated chalk with characteristic black lichen overgrowths. In contrast, the Buff Bay Formation is a sandier, yellow-tan carbonate sediment that is only moderately indurated and lacks lichens. Ex-
Figure 3. Site 563 isotopic stratigraphy and biostratigraphy. Modified after Wright and others (1992) using biostratigraphic data from Miller and others (1985). Letters a, b, and c are informal subdivisions of Miocene oxygen isotopic zone Mi5 used here. CM7 = carbon maximum 7 of Woodruff and Savin (1991).
The differences between tropical and subtropical biostratigraphy can be explained either by diachrony or unconformities in the sections. Both foraminiferal and nanofossil ranges could be diachronous. This potential diachrony is illustrated using the time scale of Cande and Kent (1992) (referred to as CK92; Fig. 4) and correlations developed below (see Discussion); note that Figure 4 contains elements of the various time scales shown in Figure 1 (for example, the tropical zonal relationships are similar to BKD85 [Barron and others, 1985], and the subtropical relationships are those of BKV85 [Berggren and others, 1985]).

In contrast to diachrony, Aubry (1993) attributed a large part of the differences between biozones at Buff Bay and those at Site 653 and 558 to previously undetected unconformities at the subtropical sections. She suggested that a hiatus of 0.5–1.0 m.y. occurred at the subtropical sites (that is, from ca. 11.5 to 10.8 Ma on Fig. 4; see Discussion). This is not a regional or even circum-Atlantic problem, because there are many sites that recorded a “Site 563 type” biostratigraphic pattern (for example, Cape Basin Site 360, Wright and others, 1992; North Atlantic Site 608, Miller and others, 1991; Gartner, 1991) and others that recorded a “Buff Bay type” pattern (for example, western equatorial Pacific Sites 289 and 621; Bronnimann and Resig, 1971; Martini and Worsley, 1971; Srinivasan and Kennett, 1981; Shafik, 1975; see figure on p. 82 in Winterer and others, 1971, for comparison of Site 62.1 zonations). If Aubry’s (1993) suggestion is correct, then current time scales are wrong and widespread unconformities formed at about 11 Ma (using CK92; Fig. 4). If the zones are diachronous, then the relationships shown on previous time scales (for example, Berggren and others, 1985) must be reconsidered (for example, Fig. 4). To resolve this problem, an independent means of evaluating biostratigraphic correlations is required. As a first step, we generated a magnetostratigraphic record for the Buff Bay section.

Comparison of the magnetostratigraphy and biostratigraphy of the Buff Bay section complicate the problem further. Nanofossil Zone NN9 is associated with a thick reversed magnetozone at Buff Bay (Fig. 2), whereas it is associated with a thick normal magnetozone at Sites 563 (Fig. 3) and 558. Zone NN8 is associated with a normal magnetozone at Buff Bay, but with a predominantly reversed interval at Site 563 (Fig. 3). These complications suggest that an independent evaluation of the magnetostratigraphy is needed. In this paper, we present the oxygen and carbon isotopic data as an independent means of evaluating magnetostratigraphic and biostratigraphic correlations.

METHODS

Magnetostratigraphy

A total of 68 oriented hand samples were taken from the Buff Bay Main and Slide sections for demagnetization experiments and magnetostratigraphic analysis; additional samples were obtained from the Middle and Pots and Pans sections that compose the bulk of the Spring Garden Member of the Montpelier Formation (Fig. 2). Two 10 cm³ specimens were cut from each hand sample for alternating field (AF) and thermal demagnetization and measurement in an ScT cryogenic magnetometer. The natural remanent magnetization (NRM) intensities are low (median values 1.79 mA/M for the Main and Slide sections); samples from most of the Spring Garden Member (Middle and Pots and Pans sections) were very weakly magnetized (median values 0.03 mA/M), with intensities approaching the sensitivity of the magnetometer, and were not considered further. NRMs were found to be entirely of normal polarity with a mean direction in situ coordinates of 353.1°/29.2° (declination/inclination), very close to the dipole field direction in northeast Jamaica.

1609
A tentative interpretation of these data is that the magnetic polarity of the samples is predominantly normal and/or the NRM has been severely affected by a recent remagnetization. The Buff Bay samples were subjected to progressive AF demagnetization to peak fields up to 100 mT in steps ranging from 5 to 10 mT (Fig. 5). Roughly half of the magnetizations decayed along an origin-bound trajectory from the typical NRM direction (north/down) while the remainder decayed and then increased in magnetization intensity in the southern hemisphere (south/up or south/down). AF demagnetization at steps as high as 70–100 mT were not capable of fully resolving this magnetization from the NRM but indicate the presence in some samples of a high-coercivity reversed polarity magnetization heavily overprinted by a lower-coercivity secondary magnetization. Attempts at thermal demagnetization of a pilot suite of samples generally revealed less-stable demagnetization profiles and were similarly incapable of resolving the component of reversed magnetization.

For the purposes of Miocene magnetic polarity stratigraphy, using demagnetization profiles, we can identify a subset of Buff Bay samples that contain the reversed polarity magnetization (albeit incompletely resolved from a strong normal polarity overprint). The reversed polarity samples are those in which during AF demagnetization, the total magnetization vector migrates over relatively large arc distances from the northern to southern hemisphere (Fig. 5). A problem emerges when judging the polarity of the remaining samples that demagnetized along origin-bound trajectories. The presence of a strong normal polarity overprint makes it difficult to distinguish a truly Miocene normal polarity magnetization from an original, Miocene reversed magnetization now fully remagnetized by the recent overprint. Furthermore, given the proximity of North American Miocene poles to the spin axis (88°N, 100°E; Irving and Irving, 1982) and the shallow tilt of bedding at Buff Bay (17° west), we can expect a maximum angular separation between a Miocene normal polarity magnetization and a recent overprint to be just 9°.

Determining a polarity history for the Buff Bay sections is not straightforward. The data do not allow us to identify a Miocene normal polarity magnetization with full confidence and standard methods. However, we applied a qualitative, albeit unconventional, means of evaluating our polarity determinations. The demagnetization data for each sample were subjected to principal component analysis (Kirschvink, 1980), which determines a least-squares-fit vector and the mean angular deviation (MAD value) from a least-squares vector (Table A). A MAD value of about 20° was selected as a cutoff for data quality leaving 63 samples for polarity determination. Next, for each sample we measured the total arc distance traversed by the magnetization vector during AF demagnetization from 10 mT to the final demagnetization step (Table A). In the case of a clearly reversed Buff Bay demagnetization profile, the magnetization vector is expected to traverse into the southern hemisphere over large arc distances (potentially up to 180°, Fig. 5), whereas other samples that are normal or fully overprinted are likely to traverse very little during demagnetization (potentially 0° or more likely ranging between 0° and ~30°).

Arc distance data and visual inspection of demagnetization profiles were used to construct magnetic polarity stratigraphy (Fig. 2), Table A. At the bottom of the Main section the arc distance values are relatively low (0°–40°), suggesting a normal polarity interval from 213–225 m. Arc distances are generally higher than 60° in the upper part of the Main section (225–251 m), suggesting a predominantly reversed polarity zone with thin normal polarity zones. The Slide section (273–275 m) is predominantly normal in polarity based on the low arc distances. Intermediate arc distance data (between about 40° and 60°) were not used to define a change in polarity, and single-sample zonations were left as indeterminable (black or white notches in Fig. 2).

We conclude that the magnetostratigraphy of the Buff Bay section is tentative. The identification of a moderately thick reversed magnetozone is much of the Main section (Fig. 1) most likely represents a reversed field, although we cannot say for certain if the normal magnetozones identified are representative of the past field or a modern overprint.

Isotopic Stratigraphy

We analyzed samples from the Buff Bay Middle, Main, and Slide sections for stable...
Table 1. Age Estimates of Taxa Used in Buff Bay, Jamaica, Age-Depth Diagram

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Age (Ma)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanofossils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO Dicoaster hamatus</td>
<td>9.78</td>
<td>top Chronzone C5n.2n at 563</td>
</tr>
<tr>
<td>LO Camptoceras calanoides</td>
<td>9.59</td>
<td>top Chronzone C5e.1n at 563</td>
</tr>
<tr>
<td>FO Dicoaster hamatus</td>
<td>10.83</td>
<td>lowermost 1/4 Chronzone C5n.2n at 563</td>
</tr>
<tr>
<td>FO Camptoceras calanoides</td>
<td>11.11</td>
<td>lowest Chronzone C5n.2n at 563</td>
</tr>
<tr>
<td>FO Dicoaster longissimi</td>
<td>12.20</td>
<td>and Chronzone C5an.2n at 563</td>
</tr>
<tr>
<td>FO Truncatellinum rugosum</td>
<td>13.09</td>
<td>base Chronzone C2Aa at 563</td>
</tr>
<tr>
<td>FO Spiroplectites heteromorphus</td>
<td>13.26</td>
<td>top Chronzone C2Alb at 563</td>
</tr>
<tr>
<td>LO H. umbilicata</td>
<td>16.04</td>
<td>top Chronzone C2Alb at 563</td>
</tr>
<tr>
<td>Planktonic foraminifers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO Neogloboquadrina acostaensis</td>
<td>10.83</td>
<td>lowermost 1/4 Chronzone C5n.2n at 563</td>
</tr>
<tr>
<td>LO Paragloboquadrina majori</td>
<td>10.80</td>
<td>near base Chronzone C5n.2n at 563</td>
</tr>
<tr>
<td>FO Globorotalia speciosa</td>
<td>11.80</td>
<td>near base Chronzone C5e.3n at 563</td>
</tr>
<tr>
<td>LO Globorotalia ficta locusta</td>
<td>11.90</td>
<td>top Chronzone C5an.1n at 563</td>
</tr>
<tr>
<td>FO Globorotalia ficta locusta</td>
<td>11.90</td>
<td>top Chronzone C5an.1n at 563</td>
</tr>
<tr>
<td>FO Globorotalia ficta locusta</td>
<td>12.10</td>
<td>base Chronzone C5an.1n at 563</td>
</tr>
<tr>
<td>FO Globorotalia ficta locusta</td>
<td>12.60</td>
<td>uppermost Chronzone C5an at 563</td>
</tr>
<tr>
<td>FO Globorotalia spp.</td>
<td>13.00</td>
<td>lower Chronzone C5Oa at 563</td>
</tr>
</tbody>
</table>

Magnetostratigraphy and isotope ages

- top Chronzone C5r.1r: 10.834 Ma
- alternating top Chronzone C5r.2r: 10.989 Ma
- base Chronzone C5r.2n: 11.378 Ma
- alternating carbon level 1: 12.333 Ma
- carbon level 1: 12.900 Ma
- base Chronzone C5an.1n at 563: 18.3 Ma

Age of isotope changes not shown on Figure 7.

Carbon level 4: 11.3
Carbon level 3: 11.5
Carbon level 2: 11.7

*See Figure 7: calibrated to the GPTS of Cande and Kent, 1992.

Buff Bay, Jamaica

\[\delta^{18}O \text{ (‰)} \quad \delta^{13}C \text{ (‰)} \]

Figure 6. Oxygen and carbon isotopic stratigraphy of the Main and Slide sections showing the polarity and magnetostratigraphic zones from Figure 2, the foraminiferal biostratigraphy of Berggren (1993), and the nanofossil biostratigraphy of Aubry (1993). Letters a, b, and c are informal subdivisions of Miocene oxygen isotope zone Mi5 used here.
Finnigan MAT 251 mass spectrometer. Analytical error based on 20 NBS-19 measurements made during the analysis of stable isotopic data from Buff Bay was 0.05% and 0.02% for δ¹⁸O and δ¹³C, respectively. The data are reported in values referenced to the PDB (Peedee belemnite) standard (Table B).

Wright and Miller (1992) outlined applications of stable isotopic stratigraphy to the Miocene and identified the oxygen isotopic zones applied here. Isotopic studies of Miocene sections are still fairly coarse (for example, typically 50 k.y. sampling intervals) compared to late Neogene studies (for example, typically 1-5 k.y. sampling intervals), which resolve “Milankovitch” scale astronomical periodicities (20, 40, 100 k.y.). Although such astronomical periodicities are embedded in the Miocene record (for example, Pisias and others, 1985), longer period changes (m.y. scale) are observed and may be correlated from site to site (Miller and others, 1991b; Woodruff and Savin, 1991; Wright and Miller, 1992).

RESULTS

Magnetostratigraphy

Planktonic foraminifera and calcareous nanoplankton indicate a general assignment of the Main and Slide sections to the upper middle to lower upper Miocene. Within this framework, the thick reversed polarity zone observed in the Main Section (~225-251 m, Fig. 2) is interpreted as Chronozone C5r.purin. This correlation is independent of the isotopic stratigraphy presented below, although the interpretation of the position within Chronozone C5r is ambiguous without the isotopic stratigraphy. We are confident that this predominantly reversed zone represents a reversed magnetic field polarity; however, thin “normal” intervals within the reversed section cannot be distinguished from complete overprinting by the present-day field.

The moderately thick normal magnetozone from 213-225 m could be correlated with either Chronozone C5an or Chronozone C5r.2n (a normal polarity event within Chronozone C5r; Cande and Kent, 1992), or it may represent a complete overprinting by the present-day field. The presence of two reversely magnetized samples at 218.1 m and 223.9 m (Fig. 2) suggests that at least some intervals within this normal polarity zone escaped complete remagnetization. On the basis of the isotopic correlations, we correlate the normal polarity magnetozone to Chronozone C5r.2n.

Isotopic Stratigraphy

A distinct δ¹⁸O increase occurs in the Main section at about 155-190 m, with peak values attained at three levels: 201 m, 228 m, and 242 m (Fig. 6). Benthic foraminifera at Buff Bay record global δ¹⁸O changes recognized at open-ocean sites (Miller and others, 1991a; Wright and Miller, 1992), although the values are offset from these sites by ~1% due to warmer bottom-water temperatures. Based on its general biostratigraphic position, the increase in the Main section cannot be correlated with Zone M14 (middle Miocene Zone M14; Fig. 3) or M16 (lower upper Miocene Zone M16; Fig. 3). Rather, this late middle Miocene δ¹⁸O increase is the one associated with Zone M15, which occurred in early Chron C5r (Figs. 3 and 6; Miller and others, 1991a; Wright and Miller, 1992). The three peaks within Zone M15 apparently correlate with three similar peaks at Site 563; intersite correlation of these three peaks supports the carbon isotopic correlations developed below (Figs. 7 and 8).

Identification of oxygen isotopic Zone M15 provides a basis for the detailed interpretation of the magnetostratigraphy at Buff Bay (Fig. 2). The M15 δ¹⁸O increase occurs just below a normal polarity magnetozone (213-225 m) in a section that proved to be unsuitable for magnetostatigraphic analysis (Fig. 6). We thus correlate the normal magnetozone with Chron C5r.2n (Fig. 2); 11.43-11.38 Ma). Simple matching of polarity patterns might indicate that this normal polarity interval correlates with Chronozone C5an, but this is not consistent with the isotopic correlations. On the basis of the isotopic correlations, we assign the reversed magnetozone from 225-251 m to Chronozone C5r.2r (Fig. 2) with an age of 11.38-11.00 Ma (Cande and Kent, 1992).

Several isotopic correlation schemes have been proposed that use carbon isotopic changes (Louit and others, 1983; Vincent and Berger, 1985; Woodruff and Savin, 1991), and carbon isotopic changes proved to be the most useful tool in correlating the Buff Bay sections to other sites. We identify four distinct carbon isotopic excursions at Buff Bay, Jamaica (labeled 1–4 upspection on Figs. 6 and 7):

- **Level 1** is a δ¹³C minimum at 163 m within Zones N12 and N6.
- **Level 2** is a δ¹³C maximum at 199.5 m within Zones N13 and NN7; this level is immediately below peak δ¹³O values associated with an oxygen isotopic maximum (“Zone Mi5a” on Fig. 6) as it is at Site 563 (Fig. 3).
- **Level 3** is a δ¹³C minimum at 212 m within Zones N13 and NN7 immediately below normally magnetized sediments that are correlated with Chron C5r.2n.
- **Level 4** is a δ¹³C maximum at 238 m within lower Zone N15 and lower NN9 that occurs in a reversed magnetized section correlated with Chronozone C5r.2r. This level is bracketed by two oxygen isotopic maxima (“Mi5b and 5c” on Fig. 6), as it is at Site 563 (Fig. 3).

Carbon isotopic Levels 2–4 compose an interval of relatively high δ¹³C values corresponding to carbon maximum 7 (CM7 of Woodruff and Savin, 1991; Fig. 7). We note that there are several correlatable carbon and oxygen isotopic changes within this interval, allowing us to recognize Levels 2–4 at other sites.

These carbon isotopic changes can be used to correlate the Buff Bay section with tropical to high-latitude Deep Sea Drilling Project (DSDP) and ODP sites. The upper middle Miocene sections at Sites 289, 563, and Buff Bay show remarkably similar isotopic patterns, and the records at high-latitude Sites 747 and 608 record similar variations (Fig. 7). Although differences among the records can be attributed to differences in deep water sources, the similar carbon isotopic changes observed can be best interpreted as whole-ocean δ¹³C variations on the million year scale (for example, Miller and Fairbanks, 1985). The synchrony of these global changes is established by correlating among sites with good magnetostatigraphy (Sites 563, 608, 747). Once the synchrony is established, carbon isotopes provide a way to evaluate the magnetostratigraphy at Buff Bay and to correlate tropical sites to other locations.

Level 1

- **Level 1** is correlated with Chronozone CS5an at Sites 563 and 747 (probably CS5an.1, although correlation with CS5an.2 is possible; Table B: Fig. 7). At Site 608, Level 1 occurs within a thin interval of uninterpreted polarity (~258 m below sea floor [msbf]).
- **Level 1** is correlated with uppermost Zone N12 in the subtropics. At Site 563, Level 1 (206 msbf) falls within upper Zone...
N12 below the last occurrence (LO) of *Globorotalia fohsi* ssp. (204 mbsf; we use the LO of *G. fohsi* ssp. as the zonal criterion for the base of Zone N13 following Kennett and Srinivasan, 1983). Only one specimen of the *Globorotalia fohsi* lineage was found at Site 608, and Level 1 occurs in undifferentiated Zones N12–N13. Tropical-subtropical zonal markers are absent at high-latitude Site 747 (Berggren, 1992; Aubry, 1993); although correlations there are useful in verifying carbon isotopic changes relative to magnetostratigraphy, they shed little light on the biostratigraphic problems discussed here.

Level 1 is also correlated with Zone N12 in the tropics. At Buff Bay, Level 1 (163 m elevation) occurs within lower Zone N12, well below the LO of *Globorotalia fohsi robusta* at 192 m (Berggren, 1993). At Site 289, Level 1 is also correlated with Zone N12 (Fig. 7). The consistent occurrence of Level 1 in Zone N12 indicates no significant diachrony in the LO of the *G. fohsi* ssp., the nominate criterion for the base Zone N13 of Kennett and Srinivasan (1983), although minor diachrony in the LO of *Globorotalia fohsi* is indicated by the variable position of Level 1 within Zone N12.

Nannofossil correlations with Level 1 differ between the tropics and higher latitude locations. Level 1 is associated with Zone NN6 at the tropical locations (Buff Bay and Site 289) and with Zone NN7 at subtropical Site 563 and high-latitude Site 608. This implies that the nominate criterion for the base of Zone NN7 (FO of *D. kugleri*) is diachronous, being delayed in the tropics.

Level 2

The position of Level 2 is clearest at Site 563, where it is placed at 202.3 mbsf and falls
within a reversed polarity section above Chronzone C5An. At Site 747, it also lies within a thick reversed section above Chronzone C5An (Fig. 7). This reversed zone must represent Chronzone C5r \textit{partim} between 57 and 61 mbsf, although levels above 56 mbsf suffer from uncertain polarity and it is not clear what part of C5r is represented at Site 747 (Fig. 7). At Site 608, the sampling interval is coarser than at the other sites, and Levels 2–4 cannot be discriminated.

At Site 563, Level 2 occurs in lowermost Zone N14, 4 m above the FO of \textit{G. nepentes} (204 mbsf). Although Levels 2–4 cannot be discriminated at Site 608, the maximum of CM7 (= Levels 2–4) is in lower N14 at this site as it is at Site 563 (Fig. 7). At Buff Bay, Level 2 occurs in lower Zone N13, as it does at Site 289 (Fig. 7). This implies that the zonal marker for the base of N14 (= FO of \textit{G. nepentes}) was delayed at the tropical sites relative to Sites 563 and 608. Level 2 is associated with mid-Zone NN7 at Sites 289, 563, 608, and Buff Bay.

Level 2 is associated with the first of three 81O maxima associated with Zone M5S (“M5\textsubscript{5}”) at Sites 563 (Figs. 3 and 7), Buff Bay (Figs. 6 and 7), 289 (Woodruff and Savin, 1989; Fig. 7), and 747 (Wright and Miller, 1992; Fig. 7), supporting its synchrony among these locations.

Level 3

At Site 563, Level 3 is placed at 201 mbsf, immediately below the base of a normal magnetzone within Chronzone C5r (Fig. 7). At Buff Bay, Level 3 occurs immediately below the section interpreted for magnetostratigraphy and lies just below a normal magnetzone. Level 3 apparently occurs at 56.3 mbsf at Site 747 within an interval of normal polarity, this may be a normal magnetzone with Chronzone C5r or the base of Chronzone C5n, or it may reflect problems in the magnetostratigraphic record from about 52 to 57 mbsf.

At Buff Bay, Level 3 (212 m elevation) falls near the top of Zone N13, 5 m below the FO of \textit{G. nepentes} (217 m elevation); it also occurs within upper Zone N13 at Site 289. At Site 563, this level occurs in Zone NN4, 4 m above the FO of \textit{G. nepentes} (204 mbsf). This again indicates that the zonal marker for the base of N14 (= FO of \textit{G. nepentes}) was delayed at the tropical sites relative to Site 563.

Level 3 is associated with the middle of Zone NN7 at Site 563, upper Zone NN7 at Site 289, and the top of Zone NN7 at Buff Bay. This implies that the nominate criterion for the base of Zone NN8 (FO of \textit{C. coelatus}) is diachronous, being delayed in the subtropics.

This level is immediately below the second of three 81O maxima associated with Zone M5S (“M5S\textsubscript{B}”) at Site 563 (Figs. 3 and 7), Buff Bay (Figs. 6 and 7), 289 (Woodruff and Savin, 1989; Fig. 7), and 747 (Wright and Miller, 1992; Fig. 7), supporting its synchrony among these locations.

Level 4

At Site 563, Level 4 is associated with a very thin normal magnetzone within Chronzone C5r (Fig. 7); we suspect that this thin interval may represent overprinting by the present-day field. Level 4 falls in the middle part of the reversed magnetzone correlated to Chronzone C5r at Buff Bay. At Site 747, this level is placed within an interval of uninterpreted polarity from 52.5 to 56 mbsf. Whereas the original data by Heider and others (in Wise, Schlische, and others, 1991) suggests that Level 4 occurs within reversed polarity sediments, shorebased results placed Level 4 in normally magnetized sediments (Heider and others, 1992). Level 4 was not identified at Site 608, and its location at Site 289 is unclear because it could be placed either at 348 or 334 mbsf.

Although we have demonstrated that Levels 1–3 are synchronous among two or more locations relative to magnetostratigraphy, we cannot do this for Level 4. Nevertheless, because Level 4 is the top of an interval of generally high carbon isotope values (= the CM7 carbon isotope maximum of Woodruff and Savin, 1991), it is a recognizable and correlatable point in both the Buff Bay and Site 563 sections. In addition, this level immediately underlies the third of three 81O maxima associated with Zone M5S (“M5S\textsubscript{B}”) at Sites 563 (Figs. 3 and 7), Buff Bay (Figs. 6 and 7), 289 (Woodruff and Savin, 1989; Fig. 7), and 747 (Wright and Miller, 1992; Fig. 7), again indicating that it is synchronous among locations.

Level 4 is placed in lower Zone N15 at Buff Bay. At Site 289, Level 4 is also found either in Zone N15 or N14, depending on its placement. At Sites 563 and 608, the LO of \textit{P. myri} and the FO of \textit{N. acostaensis} are juxtaposed, indicating that Zone N15 is not represented at these sites or that it lies between samples. At Site 563, Level 4 is placed in mid-Zone N14 at 197.5 mbsf (10.5 m below the FO of \textit{N. acostaensis}). This indicates that the nominate criterion for the base of Zone N15 (LO of \textit{P. myri}) was premature at tropical locations (that is, Zone N15 is only valid at tropical locations). Level 4 is found in lower Zone NN9 at Buff Bay, whereas it is found in Zone NN7 at Site 563. This implies that Zone NN9 \textit{partim} in the tropics correlates with Zone NN7 \textit{partim} in the subtropics (for example, Fig. 4) and that there is considerable diachrony in the range of the nominate taxon for Zone NN9, \textit{D. hamatus}. At Site 289, Level 4 may be either in Zone NN8 or NN9, depending on its placement (Fig. 7).

DISCUSSION

Comparisons with Site 588

Site 588, located in the western subtropical Pacific (26°S), is widely used as a Miocene reference section because of its excellent oxygen, carbon, and strontium isotopic records (Kennett, 1986; Woodruff and Savin, 1991; Flower and Kennett, 1993; Hodell and Woodruff, 1994). However, the magnetostratigraphy for Hole 588A (that is, below ~235 mbsf) is entirely based on NRM data (Barton and Bloemendal, 1986) and is therefore suspected of overprinting by the present-day field (Fig. 9). In addition, foraminiferal relationships show several anomalies, such as the range of \textit{P. myri} until the end of Chron C5n (1–2 m younger than found at any other sites) (Jenkins and Srivinasan, 1986) (Fig. 9). The LO of \textit{N. acostaensis} is significantly delayed (that is, it occurs in uppermost Zone NN9) relative to the subtropical Atlantic, as previously observed at other Pacific locations (Keller and others, 1982) (Fig. 9). Nanofossil data appear more consistent, and the stable isotopic record presented by Kennett (1986) allows us to recognize the same carbon isotopic levels at this site: Level 1 occurs in the upper part of Zone NN6 as it does in the tropical Pacific sites: however, Levels 2–4 occur in Zone NN7, as they do at other subtropical sites (Fig. 9). Oxygen isotopic correlations of Zone M5a–c are consistent with the carbon isotopic correlations (Fig. 9). These isotopic correlations contradict the interpretation of a reversed magnetzone between 241 and 252 mbsf as Chron C5Ar (Barton and Bloemendal, 1986). If this reversed magnetzone represents the past field, then it should correlate with Chron C5r (Fig. 9); however, we place little credence in the interpretation of the NRM data at Hole 588A.
Figure 8. Depth-depth plot of Buff Bay, Jamaica, and Site 563, showing polarity interpretation, possible chronostratigraphic correlations (for example, C5r, etc.), first occurrences of taxa (open circles) and last occurrences (x's). Three tentative lines of correlation are shown. The first (hypothesis I; wide dashes, thin line) requires that reversed magnetized sediments at Buff Bay correlate with normally magnetized sediments at Site 563; we regard this as unlikely. The second (hypothesis II; short dashes) requires mutually exclusive unconformities in Jamaica and Site 563; however, this also requires that apparently normally magnetized sediments in Jamaica correlate with reversed magnetized sediments at Site 563, perhaps due to normal overprinting in Jamaica. The third (hypothesis III, solid lines) requires diachronous first and last occurrences of five taxa. Stable isotopic correlations (c = carbon; o = oxygen) indicate that the third correlation is correct and diachrony is illustrated (arrows).

The Jamaican Conundrum

The fundamental problem posed by the Jamaican conundrum is that foraminiferal and nanofossil biostratigraphic zonations are remarkably different at subtropical (Sites 563 and 558) and tropical locations (Buff Bay, Site 62.1 [see figure on p. 82 in Winterer and others, 1971], and Site 289 [Figs. 7 and 10]). We approached this intriguing problem with three working hypotheses, all of which require some latitudinal diachrony of taxonomic ranges. In order to formulate these hypotheses, we compared biostratigraphic, magnetostratigraphic, and isotopic levels at Site 563 with those at Buff Bay using a depth-depth diagram (Fig. 8). This depth-depth diagram shows three possible hypotheses that reconcile the tropical and subtropical records.

Hypothesis I. D. hamatus first occurs and P. mayeri last occurs near the base of a thick reversed interval at Buff Bay but at the base of a thick normal interval at Site 563. If we reject the magnetostratigraphy at either Site 563 or Buff Bay, then the biostratigraphic ranges can be partly reconciled (long dashed lines, Fig. 8). This hypothesis requires that the FOs of N. acostaensis (see also Keller and others, 1982, for an example of delayed FO of this taxon) and G. nepenthes were delayed in the tropics. As stated above, we believe that the thick reversed interval at Buff Bay represents a field reversal, and we find no reason to reject the magnetostratigraphy at either location.

Hypothesis II. If a previously undetected unconformity is placed at Site 563 near the base of the thick normal interval (thick dashed line, Fig. 8), and an unconformity is placed at 272 m at Buff Bay (Aubry, 1993), then most of the relative diachrony can be eliminated. This is the interpretation proposed by Aubry (1993), and it has the following implications (Fig. 8).

1. Reversely magnetized sediments at Site 563 would correlate with normally magnetized sediments at Buff Bay. We place much less credence in the normal magnetozone at the base of the Main Section at Buff Bay, and magnetostratigraphy cannot be used to refute this hypothesis.

2. Diachrony is greatly reduced but not eliminated because the FO of G. nepenthes is still delayed at Buff Bay (Fig. 8).
Figure 9. Magnetostratigraphy (Barton and Bloemendal, 1986), biostratigraphy (Lohman, 1986; Jenkins and Srinivasan, 1986), and isotopic stratigraphy (Kennett, 1986) of Site 588 (southwest Pacific, 26°S). Levels 1–4 correspond to the carbon isotopic levels described at Buff Bay (Fig. 6); Mi3–Mi5 are the oxygen isotopic zones of Miller and others (1991); a, b, and c are informal subdivisions of Miocene oxygen isotopic zone Mi5 used here. Note that polarities at Hole 588A are all based on natural remanent magnetization data; the left-hand column shows the interpretation of Barton and Bloemendal (1986) and the right-hand column is from this study. x = isolated occurrence.

(3) The magnetobiostatigraphic correlations and ages of the FO of D. hamatus, LO of P. mayeri, and FO of C. coalius would be significantly different from those reported by Miller and others (1985) and used by Berggren and others (1985).

This hypothesis is not supported by the correlations provided by carbon isotope Levels 3 and 4 and oxygen isotopic Zones Mi5b and Mi5c (Figs. 7 and 8), although the correlations of Level 2 and Zone Mi5a could be consistent with it.

Hypothesis III. If we accept the published magnetochronology at Site 563 (Miller and others, 1985) and the unconformity at 272 m at Buff Bay (Aubry, 1993), then at least five biostratigraphic first and last occurrence levels are diachronous (solid line, Fig. 8). This
is our favored interpretation based on isotopic correlations of Levels 3 and 4 and Zones Mi5b and Mi5c (Fig. 8), and it requires the following.

1) The FO of *D. hamatus* was delayed in the subtropics. This is supported by the relations at Site 289, which also indicate a delayed subtropical first occurrence (Fig. 10).

2) The LO of *P. mayeri* was premature at Buff Bay.

3) The FO of *C. coelitius* was delayed in the subtropics. This is also indicated by comparisons with Site 289 (Fig. 10).

4) The FO of *G. nepenthes* was delayed at tropical sites (Fig. 8). This is also indicated by comparisons with Site 289 (Fig. 10) and requires that Zone N14 be short in the tropics and long in the subtropics.

5) The FO of *D. kugleri* was delayed in the tropics.

6) Very high sedimentation rates occurred in Chron C5r.2n in Buff Bay (~240 m/m.y.).

The isotopic correlations of Levels 3 and 4 and Zones Mi5b and Mi5c support the interpretation that the five taxa discussed above had diachronous first and last occurrences and support Hypothesis III. The amount of diachrony is difficult to specify because the Berggren and others (1985) time scale relied on the Site 563 correlations for the late middle to early late Miocene interval and because the GPTS for this interval has undergone large changes since 1985 (Cande and Kent, 1992).

To estimate the amount of diachrony, we compute age estimates for middle to late Miocene planktonic foraminifera and nannoplankton (Table 1, Figs. 5 and 11) using magnetostratigraphic correlations at Site 563 (Fig. 3) and the GPTS of Cande and Kent (1992). The biostratigraphic age estimates are tentative because they are based on Site 563; the magnetostratigraphy of the section from 240 to 210 m (Fig. 3) at Site 563 contains a predominance of normal polarities compared to the GPTS, and identification of upper middle Miocene magnetochronozones at Site 563 relies on isotopic correlations (Fig. 3); Wright and Miller, 1992). However, this section still provides the only reliable middle to early late Miocene correlations among planktonic foraminifera, calcareous nannoplankton, and magnetostratigraphy. Despite this shortcoming, Figure 11 provides a good estimate of the relative diachrony of taxa and a reasonable estimate of the absolute diachrony.

Although tentative, the age estimates for some of the taxa (Figs. 5 and 11; Table 1) agree well with other proposed revisions to Berggren and others (1985). For example, Backman and others (1990) suggested an age of 12.2 Ma for the FO of *D. kugleri* versus the age of 13.1 Ma of Berggren and others (1985). Our age estimate (12.2 Ma) agrees remarkably well with the estimate of Backman and others (1990) at ODP Site 710 (tropical Indian Ocean). They also calibrated the FO of *D. hamatus* to the base of a thick normal magnetozone identified as Chronzone C5n. This is the same correlation observed at Site 563; however, the section below the FO of *D. hamatus* at Site 710 contains slumps, and Backman and others (1990) cautioned that this may not be its first true occurrence. Nevertheless, results from Site 845A (eastern equatorial Pacific) also shows that *D. hamatus* first occurs at the base of a thick normal magnetozone identified as Chronzone C5n (D. Schneider, unpub. data; I. Rafi, unpub. data); these studies indicate that this taxon may have appeared in the tropical Indian and Pacific Oceans at ca. 10.85 Ma (using KC92). At Buff Bay, *D. hamatus* appeared prior to this at ca. 11.4 Ma (Figs. 5 and 11).

The diachrony in the FO of *G. nepenthes* and *D. kugleri* is modest (~300 k.y.). These taxa may be used in tropical and subtropical zonations with the understanding that the zonal boundaries are slightly diachronous. The diachrony in the LO of *P. mayeri*, the FO of *D. hamatus*, and the FO of *C. caylatus* is ~0.5 m.y. Although these taxa may be used for endemic zonations, tropical zonations using these criteria cannot be applied to the subtropics. For example, Zone N15 (from the LO of *P. mayeri* to the FO of *N. acostaensis* is a valid zone in the tropics and thick accumulations of this zone have been noted (for example, Fig. 2; see Berggren, 1993, for discussion). However, previous studies of Sites 563 and 558 (Miller and others, 1985) suggested that this zone does not exist in the subtropical North Atlantic due to the diachronous LO of *P. mayeri*. Note that Zone N15 exists in the subtropical Pacific (for example, Site 588) due to the diachronous LO of *N. acostaensis* in this ocean (Keller and others, 1982; Barron and others, 1985). Although the diachrony of the FO of *G. nepenthes* is modest (~300 k.y.), this event can only be used as a zonal criteria for endemic zonations. This is because Zone N13 (from the LO of *G. foliis* ssp. to the FO of *G. nepenthes*) is a valid zone in the tropics but does not exist in the subtropical North.
Atlantic due to the diachronous FO of *G. nepenthes*. This also implies that Zone N13 is a thin zone where present.

Our conclusion that there are significant differences in ranges of taxa between the tropics and subtropics is not a surprise. Latitudinal diachrony in Cenozoic microfossil ranges has been documented by Johnson and Nigrini (1985), Weaver and Clement (1986), Dowsett (1988), Hess and others (1989), and Wei (1993), along with intrand interbasinal diachrony (Johnson and Nigrini, 1985; Dowsett, 1988). It is clear that many diagnostic zonal taxa are actually diachronous (for example, *Globorotalia truncatulinoides*, Dowsett, 1988; several late Neogene nannofossil taxa, Wei, 1993), although many have been shown to be synchronous within a very short duration (~0.02 m.y. for several late Neogene nannoplankton taxa; Wei, 1993). It is critical to evaluate the synchrony/diachrony of taxa against an independent chronology, including other biostratigraphy (Johnson and Nigrini, 1985), magnetostratigraphy (for example, Miller and others, 1991a), Sr-isotope stratigraphy (for example, Hess and others, 1989), oxygen isotopic stratigraphy (for example, Wei, 1993), and carbon isotopic stratigraphy (this study).

Mid- and high-latitude zonations have been developed for the Neogene because of the scarcity/absence of tropical markers at higher latitudes (for example, Kennett and Srinivasan, 1983). We have shown that many Miocene tropical markers are useful in biostratigraphic zonations at midlatitudes (for example, Site 563), and some even extend to latitudes as high as 43°N (for example, Site 608). In the Paleogene, low-latitude markers extended to even higher latitudes, but the increase in latitudinal thermal gradients during the Oligocene-Miocene (for example, Savin and others, 1985) resulted in increased bioprovincialization and restriction of tropical forms to lower latitudes (for example, Wright and Thunell, 1988). The late middle Miocene was an interval of cooling and increased latitudinal thermal gradients (for example, Savin and others, 1985; Wright and Thunell, 1988) that undoubtedly contributed to the diachrony documented here. We conclude that ranges of several taxa are useful for endemic tropical or subtropical zonations, but that late middle Miocene biostratigraphic correlations between low and midlatitudes were affected by these paleoceanographic changes.

The specter of diachrony raises concerns about using biostratigraphy in time correlations. Such concerns are exaggerated and we would still consider most biostratigraphic zonal markers useful proxies for time. Most magnetostratigraphic studies have shown that biostratigraphic markers are synchronous within better than 0.3–0.5 m.y. (for example, Miller and others, 1991a), and we argue that this is the typical biostratigraphic resolution available for much of the Cenozoic. Even in the example presented here, we document that diachrony, although real, is relatively minor (0.3–0.5 m.y.).

The diachrony of zonal markers requires revisions to geological time scale. Our revision (Fig. 4) to the late middle to early late Miocene time scale is still preliminary because (1) the ages of the FO of *N. acostaensis* and the LO of *D. hamatus*, the zonal criteria for the bases of Zone N16 and NN10, respectively, are not well constrained in the tropics; (2) the age estimates derived here should be confirmed against other tropical and subtropical locations; and (3) the position of the middle/late Miocene boundary is uncertain. The base of the stratotype Tortonian (= base of the upper Miocene) is poorly defined. At the stratotype at Rio Mazzapiedi, *D. hamatus* occurs in a single sample near the base (Sample 4 of Cita and others, 1965); this same level contains *N. acostaensis* and thus this sample is Zones N16 and NN9. This sample was interpreted as recording the LO of *D. hamatus* (that is, uppermost Zone NN9) and the FO of *N. acostaensis* (that is, basal Zone N16) by Cita and others (1965), but Berggren and others (1985) and Rio and others (1990) noted that preservation below Sample 4 is poor and the position of the basal Tortonian is uncertain. The section below Sample 4 could be interpreted as Zone NN8 (that is, prior to the sole occurrence of *D. hamatus*; Miller and others, 1985; Berggren and others, 1985) or Zone NN9 (Rio and others, 1990). We suggest that the base of the Tortonian lies within subtropical Zone NN8 immediately prior to the FO of *N. acostaensis*; if so, then the base of the upper Miocene is ca. 11 Ma and correlates to Chron C5r.1n (Fig. 4). However, it is equally possible that the base of the Tortonian is uppermost Zone NN9 and lower tropical Zone N16; if so, it could be as young as 10 Ma. Resolving this difference of 1 m.y. in the age of the middle/late Miocene boundary will require designation of a boundary stratotype.
CONCLUSIONS

Field studies of middle-upper Miocene chalks exposed at Buff Bay, Jamaica, revealed biogeographic relationships between foraminiferal and nanofossils that are very different from those in sub-tropical North Atlantic sites used to construct the global time scale. The interpretation is further complicated by the association of Zone NN9 with normal magnetozones in the North Atlantic and a reversed magnetozone in Jamaica; these magnetobiogeographic relationships require either significant diachroneity of taxa or mutually exclusive hiatuses in the North Atlantic sites versus Jamaica. Stable isotopic stratigraphy allowed us to evaluate the diachroneity and hiatus unconformity hypotheses and to conclude that several nanofossil and foraminiferal taxa are diachronous by ~0.3-0.5 m.y. Stable isotopic studies are thus proving to be valuable in evaluating Miocene correlations on the million year scale. The complicated stratigraphic problem addressed here could be solved only by integrating biotaxonomic, magnetostratigraphic, and isotopic studies.

ACKNOWLEDGMENTS

This study developed from a joint field program to Jamaica in 1987, and field support was provided by Unocal (G. Jones, R. C. Tajsma, and C. Stuart). We thank members of the field party, especially C. Stuart, who measured the section and provided us with lithologic descriptions. We thank M.-P. Aubry and W. A. Berggren for discussions of the problem. Benthic foraminiferal studies by M. E. Katz on the Buff Bay section contributed to the isotopic studies presented here. We thank M.-P. Aubry, A. J. Barron, B. H. Corliss, W. A. Berggren, and B. P. Flower for reviews. Work was supported by National Science Foundation Grant OCE9119053 (Miller) and a consortium of oil companies (BP, Chevron, Marathon, Texaco, and Unocal). This is Lamont-Doherty Earth Observatory Contribution No. 5260.

REFERENCES CITED

Berggren, W. A., K. D., and V. C. 1985, Neogene magnetostratigraphy and chronostatigraphy: in Magne-

Knutson, B., J. E., and V. C. 1980, Neogene magnetostratigraphy and chronostatigraphy: in Magne-

Knutson, B., J. E., and V. C. 1980, Neogene magnetostratigraphy and chronostatigraphy: in Magne-

Knutson, B., J. E., and V. C. 1980, Neogene magnetostratigraphy and chronostatigraphy: in Magne-

Knutson, B., J. E., and V. C. 1980, Neogene magnetostratigraphy and chronostatigraphy: in Magne-

Knutson, B., J. E., and V. C. 1980, Neogene magnetostratigraphy and chronostatigraphy: in Magne-

Knutson, B., J. E., and V. C. 1980, Neogene magnetostratigraphy and chronostatigraphy: in Magne-

MILLER AND OTHERS

MANUSCRIPT RECEIVED BY THE SOCIETY OCTOBER 8, 1993
REVISED MANUSCRIPT RECEIVED MARCH 28, 1994
MANUSCRIPT ACCEPTED JUNE 13, 1994

Printed in U.S.A.