Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation

B. S. Cramer, 1,2 J. R. Toggweiler, 3 J. D. Wright, 4 M. E. Katz, 5 and K. G. Miller 4

Received 1 September 2008; revised 7 July 2009; accepted 3 September 2009; published 23 December 2009.

[1] Benthic foraminiferal oxygen isotopic (δ18O) and carbon isotopic (δ13C) trends, constructed from compilations of data series from multiple ocean sites, provide one of the primary means of reconstructing changes in the ocean interior. These records are also widely used as a general climate indicator for comparison with local and more specific marine and terrestrial climate proxy records. We present new benthic foraminiferal δ18O and δ13C compilations for individual ocean basins that provide a robust estimate of benthic foraminiferal stable isotopic variations to ~80 Ma and tentatively to ~110 Ma. First-order variations in interbasinal isotopic gradients delineate transitions from interior ocean heterogeneity during the Late Cretaceous (>~65 Ma) to early Paleogene (35–65 Ma) homogeneity and a return to heterogeneity in the late Paleogene–early Neogene (35–0 Ma). We propose that these transitions reflect alterations in a first-order characteristic of ocean circulation: the ability of winds to make water in the deep ocean circulate. We document the initiation of large interbasinal δ18O gradients in the early Oligocene and link the variations in interbasinal δ18O gradients from the middle Eocene to Oligocene with the increasing influence of wind-driven mixing due to the gradual tectonic opening of Southern Ocean passages and initiation and strengthening of the Antarctic Circumpolar Current. The role of wind-driven upwelling, possibly associated with a Tethyan Circumequatorial Current, in controlling Late Cretaceous interior ocean heterogeneity should be the subject of further research.

1. Introduction

[2] Benthic foraminiferal δ13C and δ18O records derived from deep-sea cores provide an unparalleled image of the past structure of the ocean interior. Whole-ocean benthic foraminiferal δ18O changes reflect a combination of surface temperature of deep water source regions (high latitudes) and global ice volume, while δ13C changes provide a constraint on carbon transfer between the ocean, atmosphere, and sediments. Interbasinal δ18O and δ13C differences reflect density and nutrient contrasts within the ocean, more generally reflecting the degree of homogeneity of the interior ocean. No other paleoceanographic proxy has been measured as extensively in both temporal and geographic terms. Trends derived from compilations of these data have been analyzed for insights into the evolution of high-latitude temperatures [Emiliani, 1954, 1961; Shackleton and Kennett, 1975; Savin et al., 1975; Miller et al., 1987a], as a framework for discussion of Cenozoic climate change [Zachos et al., 2001, 2008], and to investigate the relative strength of different deepwater source regions [Wright and Miller, 1996; Poore et al., 2006]. Although these syntheses provide first- and second-order views of Cenozoic thermal evolution and the evolution of nutrient gradients in the Neogene, no comprehensive reconstruction of Cenozoic interbasinal isotopic, both δ13C and δ18O, gradients has been published.

[3] Reconstructing the relative strengths of different deepwater source regions has been a focus of paleoceanographic research [Curry and Lohmann, 1982; Oppo and Fairbanks, 1987; Woodruff and Savin, 1989; Wright et al., 1991; Pak and Miller, 1992; Wright and Miller, 1996; Corfield and Norris, 1996; Rosenthal et al., 1997; Thomas et al., 2003; Thomas, 2004; Poore et al., 2006]. The primary regions of deepwater formation in the modern ocean are in the North Atlantic (North Atlantic deepwater: NADW) and near Antarctica in the Atlantic sector of the Southern Ocean (Antarctic Bottom Water: AABW). NADW and AABW have distinct nutrient and density (temperature and salinity) signatures that trace their penetration from north and south. The paradigm of bipolar water masses, generalized for the past as Northern Component Water (NCW) and Southern Component Water (SCW), has served as a framework for paleoceanographic reconstruction of deep water source regions.

[4] While substantially contributing to our understanding of circulation patterns within the ocean interior, the focus on traceable water masses has (1) reinforced a conceptualization of overturning circulation as the conveyor-like net flow of circulation.
water connecting regions of deepwater formation with regions of upwelling [Broecker, 1991], (2) overemphasized the role of deep water production in driving the overturning circulation, and (3) led to the misconception that, if the sort of distinct water masses seen today cannot be found in the past, the overturning circulation may be assumed to have been weaker.

We view the production of deep water as a second-order characteristic of ocean overturning, resulting from the more fundamental first-order process of upwelling and removal of deep water from the interior. By this way of thinking, the rate and pattern of ocean overturning circulation is dictated by the way that dense deep water is brought back to the surface, a process that requires an input of energy from the winds and secondarily from tidal mixing [Wunsch, 2002].

Recent ocean circulation modeling efforts have demonstrated that the relative strength of different deep-water source regions, the second-order feature of ocean circulation, is sensitive primarily to ocean temperature [de Boer et al., 2007, 2008]. The effect of low polar salinities in negating the effect of low polar temperatures on the density of seawater is greatest at low temperatures (<4°C). Thus, the overturning may be split into thermal and haline regimes that are dominant in warmer and colder oceans, respectively. For a given mechanical energy input, deep-water formation should be more vigorous in more places in warmer climates [de Boer et al., 2007]. The thermal/haline split explains the insensitivity of deepwater formation in the North Pacific: deep water production in the high-salinity North Atlantic is dominant in the modern cold ocean [de Boer et al., 2008].

We use new compilations of Upper Cretaceous–Cenozoic deep-sea δ13C and δ18O records separated by ocean basin to illustrate large-scale changes in the homogeneity of the ocean interior over the last 80 Myr. Separate isotopic compilations from the North Atlantic, South Atlantic/Subantarctic, tropical Pacific, and high-latitude Southern Ocean basins are used to generate records of interbasinal isotopic differences. The separation of trends by basin provides a reconciliation of differences between trends calculated from previous data compilations [Miller et al., 1987a; Zachos et al., 2001]. The addition of new data also allows the calculation of an isotopic trend for much of the Cretaceous (<110 Ma), an important extension of a curve that has become a default linear interpolation between equivalent ages for magnetic polarity reversals, with minimal modification except in the middle to late Eocene, where biostratigraphic data often conflicted with isotopic stratigraphy. Age models for middle to late Eocene records that resolve the middle Eocene δ18O minimum (MECO, ~39.8–40.6 Ma [Bohaty and Zachos, 2003; Bohaty et al., 2009]) were recalibrated using linear interpolation between that event and the earliest Oligocene δ18O maximum (Oi-1). We provide ages relative to both Gradstein et al. [2004] and Cande and Kent [1995] in the data sets (see auxiliary material).

Vital effects in different species of benthic foraminifera can result in systematic interspecies isotopic offsets. We used only data generated from monogeneric samples of Cibicidoides (including samples identified as Planulina wuellerstorfi and P. renzi) for the Oligocene to present. Data generated using monogeneric samples of Cibicidoides, Oridorsalis, Nuttallides, or Stensioina (Gavelinella) were used for the Paleocene and Eocene, with values corrected to Oridorsalis using established correction factors [Katz et al., 2003a]. Due to sparse Cretaceous data, all monogeneric Cretaceous samples were used and corrected to Oridorsalis using established correction factors [Katz et al., 2003a] where available and ad hoc correction factors for other data. Following Shackleton [1974], most of the paleoceanographic community has assumed that Cibicidoides δ18O values are 0.64‰ less than equilibrium with seawater, but more recent work indicates that Cibicidoides tests are precipitated at isotopic equilibrium with seawater in δ18O [e.g., Bemis et al., 1998; Costa et al., 2006] as well as δ13C. We plot and tabulate data corrected to Cibicidoides, the genus analyzed for most of the data in our compilation, including all of the Neogene data.

In estimating a trend through the data, our intention is to extract variability of similar timescale (>1.5 Myr; Figure 4) throughout the last 80 Myr. Late Paleogene–Neogene data is considerably oversampled for this purpose and has been synthesized previously with methods better adapted to show short-timescale variability [e.g., Poore et al., 2006]. Our goal also is to synthesize data from multiple sites without overemphasizing those sites with highest sampling interval and to avoid the creation of artificial temporal variability due to the juxtaposition of data from geographically disparate locations, both of which have introduced biases into previous compilations. Our method assumes that differences in isoto-

Figure 1. Paleogeographic reconstructions for the Cenozoic showing sites used for estimating isotopic trends in 20 Myr intervals. Records from each site generally do not span the full 20 Myr interval. Paleogeographic reconstructions are for the midpoint of the interval (present-day for the 0–10 Ma interval) and were drawn using the Internet-based tool available from the Ocean Drilling Stratigraphic Network [Brückmann et al., 1999; Hay et al., 1999].
pic values from various sites entirely reflect systematic geographic variability rather than site-wise biased sampling of temporal variability. To the extent that is not the case, our smooth curve underestimates the true variability of the deep-ocean isotopic reservoir.

[11] Data for individual sites were interpolated to 0.1 Myr resolution using a local linear regression method with tricube weighting in 0.8 Myr width bins. This provides a more stable bandwidth response in data with highly variable sampling interval than the commonly used Loess algorithm [Cleveland and Devlin, 1988], in which the number of data points used in each linear regression is fixed and independent of the local sampling interval. Basin-wide trends were estimated through the site-wise interpolated data using an iterative process: an estimated trend was calculated as the local linear regression through site-wise interpolated data, the offset between interpolated values for each site and the estimated trend was calculated and smoothed using a Gaussian low-pass filter.

Figure 2. Global compilation of benthic foraminiferal isotope records with best fit trends (see section 2). Separate trends are shown for the Pacific, North/equatorial Atlantic, South Atlantic/subantarctic Southern, and high-latitude Southern oceans. In the older Cretaceous, the 95% confidence interval for the trend through the available data is shown rather than the best fit. Individual data points have been corrected to *Cibicidoides*-equivalent values. Data and calculated trends are tabulated in the auxiliary material.
Figure 3. Trends projected through compilations of data for the tropical Pacific, North/equatorial Atlantic, South Atlantic/subantarctic Southern, and high-latitude Southern oceans. Individual data points have been corrected to *Cibicidoides*-equivalent values and are plotted in shades calibrated to paleowater depth. Trends are offset from the data by 1% for clarity. The 90% confidence interval for the trend projected through all data from each basin is shown as a gray swath with trends for paleodepth-separated subsets of the data superimposed: 1000–2000 m (dark red), 2000–3000 m (orange), 3000–4000 m (blue-green), and >4000 m (dark blue).
with 0.1 response at 10 Myr period, and a new trend estimate was calculated through the offset-corrected site-wise interpolated data. The process was repeated until the estimated trend converged to a small (<0.001%) variation between iterations.

[12] A 90% confidence envelope was calculated around the trend using a bootstrapping approach. We subtracted the trend from each data point (noninterpolated) to obtain a population of residual values. Examination of the histogram of this population for each ocean basin shows that the residual values are approximately normally distributed and that the distribution is constant through time except in the interval <2 Ma. Synthetic data sets were constructed by replacing each original data point with the age-equivalent trend value and adding a randomly selected value from a normal distribution fit to the residual population; trends were calculated for each synthetic data set using the procedure described in the previous paragraph. Using 1000 synthetic trends, the 90% confidence envelope surrounding the trend is defined by the 5th and 95th percentile for each point in the trend estimate.

[13] The resulting confidence envelope reflects the uncertainty in the trend resulting from the distribution of data among different sites and through time. It neglects the uncertainty in the age calibration of data, but overestimates the overall uncertainty by assuming that the residual population is randomly distributed in time and uncorrelated among sites. In fact, due to orbital forcing of climate, the residual population should be expected to be largely cyclical in time and highly correlated among sites. The confidence envelope also neglects the uncertainty in the basin-wide isotopic trend estimates due to geographic bias in the distribution of sites.

[14] One concern in projecting trends through paleoceanographic data over long time periods is that, due to seafloor spreading and subduction, the drilled sites are biased toward shallower water depth with increasing age. Paleodepths were estimated for each data point in our compilation using back-tracking, which takes into account the thermal subsidence and sediment loading of the crust through time [Sclater et al., 1971; Berger and Winterer, 1974; Parsons and Sclater, 1977; Miller et al., 1987b; Stein and Stein, 1992]. We use equations based on the empirical approximation for crustal subsidence through time found by Stein and Stein [1992]:

$$\text{Paleodepth} = \text{InitialDepth} + S(\text{CrustAge} - \text{SampleAge}) - 0.66 \times (\text{CrustDepth} - \text{SampleDepth})$$

where

$$\text{InitialDepth} = \text{PresentDepth} - S(\text{CrustAge}) - 0.66 \times \text{CrustDepth}$$

and

$$S(x) = \begin{cases} 365\sqrt{x} & \text{for } \text{CrustAge} < 20 \text{Ma} \\ 3051 \times \left(1 - \frac{8}{\pi^2} e^{-0.0278x}\right) & \text{for } \text{CrustAge} \geq 20 \text{Ma} \end{cases}$$

[15] Basement age and total sediment thickness for each site were taken either from DSDP and ODP site reports or from map data downloaded from ftp://ftp.es.usyd.edu.au/pub/agegrid/2008/Grids and http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html. A plot of the paleodepths versus sample age demonstrates that the older samples are somewhat biased toward shallower depths (Figure 5). Separate trends calculated for subsets of the data in 1000 m intervals generally fall within the 90% confidence envelope for the trend calculated through all data (Figure 3). Where that is the
Figure 6. Carbon and oxygen isotopic trend estimates for individual ocean basins (Figure 3) and difference ($\Delta \delta^{13}C$ and $\Delta \delta^{18}O$) curves with the Pacific basin (Pacific therefore plots as a vertical line at 0). Difference curves were calculated by subtracting the trend estimated for the Pacific compilation from trends estimated for individual basins and smoothing with a Gaussian low-pass filter (0.2 response at a period of 3 Myr). Trends and interbasinal differences with 90% confidence envelopes are tabulated in the auxiliary material. Changes in benthic foraminiferal communities are shown following Miller et al. [1992] and Thomas [1992a, 2007]. North Atlantic drift accumulation rates are taken from Wold [1994] and plotted following Wright and Miller [1996]. Timing of widespread depositional hiatuses is shown following Wright and Miller [1993] and Mountain and Miller [1992].
Figure 7. Comparison of global and basinal isotopic trend estimates from this paper with those of Miller et al. [1987a] (no δ^{13}C published) and Zachos et al. [2001]. Differences between the three studies reflect both differences in data distribution (temporal and geographic) and statistical treatment of the data.

3. Temporal Trends and Interbasinal Gradients

The Cenozoic deep ocean isotopic trends calculated here confirm the broad patterns shown in previous compilations (Figures 2 and 7): (1) a late Paleocene δ^{13}C maximum followed by a large (>2‰) decrease in δ^{13}C values into the early Eocene, (2) an extended δ^{18}O maximum during the early Eocene climate optimum (EECO), (3) a >4‰ increase in δ^{18}O values from the early Eocene to the present, and (4) a ~0.75‰ δ^{13}C increase across the early/middle Miocene boundary followed by a ~1.5‰ middle to late Miocene δ^{13}C decrease. The long-term δ^{18}O increase occurs in three steps that have been associated with major changes in the size of polar ice sheets: the earliest Oligocene glaciation of Antarctica (33–34 Ma, Oi-1 event [Miller et al., 1991; Zachos et al., 1992]), middle Miocene development of a permanent East Antarctic ice sheet (12–14 Ma [Wright et al., 1992; Flower and Kennett, 1994]), and late Pliocene increase in large-scale Northern Hemisphere ice sheets (2.6–2.7 Ma [Shackleton et al., 1984]).

Our reconstruction differs substantially from that of Zachos et al. [2001] in the late Oligocene and middle to late Miocene (Figure 7). The Pacific δ^{13}C trend decreases throughout the middle to late Miocene (15–5 Ma) with a small increase from 11 to 9 Ma, similar to the trend calculated by Poore et al. [2006] but differing from the abrupt drop in the latest Miocene shown by Zachos et al. [2001]. In contrast with the large (~1‰), abrupt δ^{18}O decrease in the late Oligocene shown by Zachos et al. [2001], we show only small (~0.5‰) δ^{18}O decreases in the late Oligocene/Pacific and South Atlantic/Subantarctic trends as the initiation of a series of δ^{18}O oscillations (the Mi events of Miller et al. [1991]) through the early Miocene. These differences result from our separation of compilations by basin and our method of calculating trends that minimizes artifacts due to differing data density and temporal extent among individual records. The trend calculated by Zachos et al. [2001] predominantly follows the trend from sites with highest sampling resolution: their late Oligocene δ^{18}O decrease results from a switch from high-latitude Southern Ocean records (ODP Sites 689, 744, and 747) to the high-resolution record from South Atlantic ODP Site 929 (as noted by Ravizza and Zachos [2003] and Pekar et al. [2006]) while their late Miocene δ^{13}C decrease occurs when the trend shifts to the high-resolution record from Pacific ODP Site 846.

By extending the records into the Cretaceous, our compilation provides a longer context for the Cenozoic changes. In the context of the Cretaceous record, the middle Paleocene δ^{13}C increase is not obviously unusual, with δ^{13}C values similar to peak late Paleocene values occurring in the early Albian, Cenomanian, and Maastrichtian (Figure 2). This contrasts with bulk carbonate δ^{13}C records which show an unusually large δ^{13}C increase preceding the late Paleocene peak [Katz et al., 2005]. Similarly, the decrease in δ^{18}O values into the early Eocene and subsequent increase to the late Eocene are not obviously unusual for the Cretaceous, with Cenomanian-Turonian and Santonian δ^{18}O values lower than those of the early Eocene and high values in the Maastrichtian similar to those of the late Eocene. Notably, the best evidence for sea level lowering due to growth of ice on Antarctica during the Cretaceous is coincident with peak δ^{18}O values in the Maastrichtian [Miller et al., 1999].

Separation of stable isotope records by ocean basin allows a comprehensive reconstruction of interbasinal stable isotopic differences (Figure 6). In broad terms, this reconstr...
struction provides the basis for a tripartite paleoceanographic division of the last 80 Ma: large (\textasciitilde 0.5\%) interbasinal isotopic differences characterize the Late Cretaceous and late Paleogene–Neogene ocean, while the early Paleogene ocean was homogeneous with isotopic differences <0.5\%. Late Cretaceous isotopic gradients have been previously documented and used to infer changes in deepwater circulation patterns [e.g., Barrera et al., 1997; Frank and Arthur, 1999]. The increase in interbasinal $\delta^{13}C$ gradients during the Miocene has also been documented in previous more detailed studies [Woodruff and Savin, 1989; Wright et al., 1991; Wright and Miller, 1996; Billups, 2002; Poore et al., 2006], with our records confirming the divergence of the North Atlantic and Pacific in the middle Miocene (13–10 Ma) and divergence of the North Atlantic and South Atlantic/Subantarctic in the late Miocene (~7 Ma). Although attempts have been made to use the minor isotopic gradients in the early Paleogene to infer patterns of deepwater circulation [Pak and Miller, 1992; Corfield and Norris, 1996], we emphasize the relative isotopic homogeneity of the early Paleogene as itself a significant observation [e.g., Sexton et al., 2006]. The increase in the Southern–Pacific Ocean $\delta^{18}O$ difference from the middle Eocene to early Oligocene that marks the end of early Paleogene homogeneity has also not been previously noted. In section 4, we note other evidence that supports identification of the Maastrichtian–Paleocene and middle Eocene–early Oligocene as intervals of major reorganization of ocean circulation, and summarize previously published hypotheses regarding the development of $\delta^{13}C$ gradients in the Miocene. In section 5 we refer to previously published ocean circulation modeling experiments that provide a basis for interpreting the development of the large interbasinal $\delta^{18}O$ gradients in the middle Eocene–late Oligocene.

4. Reorganizations in the Ocean Interior

Changes in ocean circulation alter interior ocean ventilation, bottom water nutrient distributions, and deep currents. These effects are reflected in the fossil record of bottom-dwelling organisms, such as benthic foraminifera, and as changes in depositional mode in the sedimentary record. The largest extinction event among benthic foraminifera of the last 100 Myr occurred at the Paleocene/Eocene boundary, while a series of more gradual extinctions and originations of benthic foraminiferal species occurred during (1) the late middle Eocene through earliest Oligocene, (2) the late early to early middle Miocene, and (3) the middle Pleistocene (Figure 6) [Miller et al., 1992; Thomas, 2007; Hayward et al., 2007]. Evidence from sediment distribution points to changes in deep current configuration during the Eocene-Oligocene transition, late early to middle Miocene, and Miocene-Pliocene transition (Figure 6) [Kennett, 1977; Wright and Miller, 1993, 1996].

The timing of the Cretaceous–Paleogene reduction in interbasinal $\delta^{13}C$ and $\delta^{18}O$ gradients is somewhat obscured by the surface environment effects of the catastrophic K/Pg boundary Chicxulub meteor impact [Alvarez et al., 1980; Hildebrand et al., 1991]. It is unlikely that this high-energy but transient event could have effected a long-term alteration of the ocean interior, especially since the event had minimal effect on benthic communities [e.g., Culver, 2003; Thomas, 2007]. Phytoplankton diversity did not recover for several million years following the impact event [Katz et al., 2004; Coxall et al., 2006]. The reduction of surface ocean export production to the deep sea apparently led to an extended reduction in surface to deep ocean $\delta^{13}C$ gradients [e.g., D'Hondt et al., 1998; Coxall et al., 2006] which would result in a reduction in interbasinal benthic foraminiferal $\delta^{13}C$ gradients regardless of changes to ocean circulation. Changes in benthic foraminiferal communities are concentrated at the Paleocene/Eocene thermal maximum (PETM), a catastrophic global warming event that resulted from a rapid input of isotopically light carbon into the ocean/atmosphere [Kennett and Stott, 1991; Thomas and Shackleton, 1996; Thomas, 1998; Katz et al., 1999; Sluijs et al., 2007]. An erosional event in the late Paleocene (seismic reflector A$^\alpha$) just prior to the PETM has been attributed to an increase in SCW entering the Atlantic [Mountain and Miller, 1992; Katz et al., 1999]. Mountain and Miller [1992] speculated that this pulse resulted from tectonic opening of passages between the North Atlantic and Southern Ocean, which has also been invoked as an explanation of a temporary reduction in $\delta^{13}C$ gradients during the Maastrichtian [Frank and Arthur, 1999]. An increase in εNd values from the Pacific over several million years spanning the K/Pg boundary has been interpreted as evidence for a significant change in ocean circulation [Thomas, 2004]. It is possible that both the K/Pg impact and PETM occurred during a long-term transition in the structure of the interior ocean, with the catastrophic environmental changes associated with those two events obscuring the slower changes in the structure of the ocean interior.

Eocene benthic foraminiferal taxa were gradually replaced through a series of extinctions and originations beginning in the late middle Eocene and culminating in the earliest Oligocene glaciation of Antarctica (Oi-1 event [Tjalsma and Lohmann, 1983; Miller et al., 1991; Zachos et al., 1992; Miller et al., 1992; Thomas, 1992b, 2007]). The middle Eocene–early Oligocene is recognized as a transitional interval in numerous marine proxy records. Deep Pacific εNd values decreased in the middle Eocene, interpreted as reflecting increasing influence of a Southern Ocean deep water source [Thomas, 2004; Thomas et al., 2008], and an increase in Atlantic sector Southern Ocean εNd values indicates flow of water from the Pacific through the Drake Passage beginning immediately after the middle Eocene climatic optimum (MECO) [Scher and Martin, 2004, 2006], a ~0.6 Myr long interval of warming superimposed on the middle to late Eocene cooling trend [Bohaty and Zachos, 2003; Bohaty et al., 2009]. A series of carbonate accumulation events in the equatorial Pacific occurred in the middle to late Eocene, seen as precursors to the dramatic deepening of the carbonate compensation depth coincident with the Oi-1 event, with the largest of these also following the MECO [Lyle et al., 2006; Bohaty et al., 2009]. Variations in geographic patterns of productivity, and specifically an increase in Southern Ocean productivity, indicate a redistribution of surface ocean nutrients in the same interval (discussion by Schumacher and Lazarus [2004], Barker and Thomas [2004], and Berger [2007]).
In the sedimentary record, late Eocene hiatuses in the Southern Ocean [Wright and Miller, 1993] preceded an abrupt erosional pulse in the North Atlantic and Southern Ocean [Kennett, 1977; Miller and Tucholke, 1983; Mountain and Miller, 1992; Wright and Miller, 1996] and onset of drift deposition in the North Atlantic and North Pacific [Wold, 1994; Rea et al., 1995] at Oi-1 (Figure 6), indicating a spin-up of deep-ocean currents. Consistent with these changes, a gradual increase in interbasinal $\delta^{18}O$ gradients through the late Eocene culminated in an abrupt increase coincident with Oi-1 (Figure 6), indicating that the development of a more complex interior ocean density structure accompanied environmental changes that affected the benthic foraminiferal communities: primarily deep ocean nutrient distribution but potentially including corrosivity, dissolved oxygen, and temperature [Thomas and Gooday, 1996; Thomas, 2007]. The more complex interior ocean structure is also reflected in the more depth stratified character of Oligocene benthic foraminiferal taxa as compared to the Eocene, particularly in lower deep and bottom waters [Katz et al., 2003b]. The increase in $\delta^{18}O$ gradients was a long-term shift that persisted throughout the Oligocene and Neogene, but $\delta^{13}C$ gradients increased only briefly during the Oi-1 event [Miller, 1992].

Three factors are implicated in the increasing $\delta^{18}O$ gradients from the middle Miocene to the present: (1) deepening of sills surrounding Iceland allowed greater overflow of colder waters to the north, thereby strengthening NCW formation in the North Atlantic [Wright and Miller, 1996; Poore et al., 2006]; (2) shoaling of the Isthmus of Panama increased the salinity of the North Atlantic [Haug and Tiedemann, 1998; Billups, 2002; Lear et al., 2003] and forced a longer deepwater route between the North Atlantic and Pacific [Nisancioglu et al., 2003]; and (3) cooling of the deep ocean favored haline over thermal overturning circulation, thus strengthening NCW formation in the saline North Atlantic at the expense of Pacific NCW formation [de Boer et al., 2008]. The middle Miocene transition (13–10 Ma), accompanied by a turnover in benthic foraminiferal taxa and increased drift deposition in the North Atlantic, is well correlated with an increase in sill depth surrounding Iceland [Wright and Miller, 1996; Poore et al., 2006], whereas the late Miocene–Pliocene transition (5–7 Ma) is better correlated to the closing of the Isthmus of Panama [Lear et al., 2006].

![Figure 8. Benthic foraminiferal $\delta^{18}O$ measurements overlain on sections showing the meridional overturning stream function from ocean general circulation model simulations of Toggweiler and Bjornsson [2000]. Colors of $\delta^{18}O$ measurements vary from purple for high $\delta^{18}O$ (e.g., cooler temperatures) to yellow for low $\delta^{18}O$ (e.g., warmer temperatures).](image)

10 of 14
2003] and cooling of the ocean below ~4°C [Lear et al., 2000; Billups and Schrag, 2003] that would favor haline overturning circulation.

5. Implications for Reorganization of Ocean Overturning Circulation

[25] Our δ18O compilations indicate long-term cooling of the ocean interior and increasing ice volume from the early Eocene to the present (Figure 2), as confirmed by numerous previous studies [Emiliani, 1954, 1961; Shackleton and Kennett, 1975; Savin et al., 1975; Miller et al., 1987a; Zachos et al., 2001; Lear et al., 2000; Billups and Schrag, 2003]. Our interbasinal comparisons reveal that during this same period, the ocean interior switched from a homogeneous to a heterogeneous state (Figure 6), as might be predicted from consideration of the decreased sensitivity of water density to temperature differences in a cold ocean [de Boer et al., 2007]. However, isotopic heterogeneity increased throughout the Oligocene-Miocene, while ocean temperatures remained in the range (>4°C) of high sensitivity of density to temperature until the middle Miocene [Lear et al., 2000]. In addition, sediment erosion and drift deposition indicates increasingly vigorous deepwater currents during the Oligocene, contrary to the prediction for a colder ocean [de Boer et al., 2007].

[26] We regard the geographic pattern of the δ18O differentiation during the Oligocene as a diagnostic characteristic of the development of the ACC (Figure 8). Ocean circulation model experiments strongly support the expectation that most of the ocean’s thermal structure would be confined to the upper few hundred meters in an ocean without a circumpolar passage [Cox, 1989; Toggweiler and Samuels, 1998; Toggweiler and Bjornsson, 2000]. The effects of opening the Southern Ocean gateways and allowing circumpolar circulation are (1) to create a barrier to mixing of waters to the north and south of the ACC [Toggweiler and Bjornsson, 2000; Sijp and England, 2004, 2005]; (2) an increase in meridional overturning due to the deep upwelling associated with the ACC [Toggweiler and Samuels, 1998; Toggweiler and Bjornsson, 2000]; and (3) net transfer of heat from the Southern Hemisphere to the Northern Hemisphere, resulting in an increase in sea surface temperature at high northern relative to high southern latitudes [Toggweiler and Bjornsson, 2000; Nong et al., 2000; Sijp and England, 2004; Huber et al., 2004]. The changes in sea surface temperature at high latitudes should be expected to propagate into the deep ocean, and the Oligocene δ18O differences of ~0.5‰ between the Southern and Pacific oceans and as much as 1‰ between the Southern and North Atlantic oceans (Figure 6) are consistent with model results indicating an increase of 4–6°C in the sea surface temperature gradient [Toggweiler and Bjornsson, 2000]. While an increase in the temperature differential between NCW and SCW should be expected at the initiation of circumpolar flow, the initially shallow passages in the Southern Ocean would have restricted the ACC to shallow depths and therefore reduced its effectiveness as a barrier to mixing of intermediate and deep waters. This explains the gradual increase in the δ18O gradient between high-latitude Southern Ocean and South Atlantic/Subantarctic sites during the Oligocene: a shallow circumpolar flow would have been allowed with the opening of the Tasman passage during the late Eocene [Exon et al., 2004; Stickley et al., 2004], but a full depth ACC did not develop until the late Oligocene as the depth of the Drake Passage increased (Figure 8) [Barker and Thomas, 2004; Lyle et al., 2007].

[27] The more homogeneous ocean interior of the early Paleogene reflects a lack of substantial differentiation between northern and southern deepwater source regions that was later enabled by the development of the ACC. Without the strong, localized upwelling associated with the ACC, early Paleogene ocean circulation was likely driven primarily by broad, diffuse upwelling as small-scale turbulent mixing warmed the interior ocean, but warmer temperatures favoring thermal circulation maintained a well-mixed ocean without widespread anoxia. Regions of deepwater formation may have existed in the North and South Pacific as well as the North and South Atlantic, but the nutrient characteristics of these deepwater source regions were similar, resulting in low δ13C gradients [see also Sexton et al., 2006]. Generally slightly lower δ13C values in the Pacific may reflect an accumulation of older deepwater in the larger Pacific basin, enriched in 12C from the gradual breakdown of organic material sinking from the surface, or it may reflect a higher initial nutrient content of deep water formed in the North Pacific.

[28] It is difficult to imagine an alternative mechanism that could explain the evolution of δ18O gradients between the middle Eocene and late Oligocene. A significant increase in the δ18O gradients occurred near the Eocene-Oligocene boundary, in conjunction with the formation of the first large-scale ice sheet on Antarctica. It is possible that substantial sea ice and increased meridional temperature gradients associated with a continent-scale Antarctic ice sheet may have had a role in the formation of colder SCW [e.g., Miller et al., 2008; Barker and Thomas, 2004], but these factors do not explain the gradual restriction of high δ18O deep waters to the high-latitude Southern Ocean or the increased strength of NCW sources indicated by erosional hiatuses in the North Atlantic and the inception of drift sedimentation in the North Atlantic and North Pacific (Figure 6).

6. Summary and Future Work

[29] We have reconstructed benthic foraminiferal stable isotopic trends for the North Atlantic, South Atlantic/Subantarctic, high-latitude Southern, and Pacific Ocean basins over the last 80 Myr. The differences among these trends differentiate isotopically heterogeneous oceans of the early Paleogene–Neogene and latest Cretaceous from the isotopically homogeneous ocean of the early Paleogene. Large δ13C gradients in the Neogene and Late Cretaceous have previously been described and interpreted as indicating changes in the pattern and strength of circulation of deep waters from different source regions. The development of large δ18O gradients between the Southern Ocean and other basins between the middle Eocene and late Oligocene has not previously been described. The development of this gradient can be explained as the result of the formation of the ACC with the separation of South America and Australia from
Antarctica. The timing of the divergence of Southern Ocean $\delta^{18}O$ values and gradual restriction of the highest $\delta^{18}O$ values to the high-latitude Southern Ocean corresponds well with the opening of a complete circumpolar passage in the late Eocene and deepening of the Drake Passage through the Oligocene that has been inferred from other evidence [Stickley et al., 2004; Livermore et al., 2007; Lyle et al., 2007].

Our reconstructions suggest that Southern Ocean $\delta^{18}O$ values began to diverge from the Pacific in the middle Eocene, although the difference between the Southern Ocean and Pacific trends does not reach the 90% confidence level until the late Eocene (Figure 6). If the thermal differentiation of the Southern Ocean occurred during the middle Eocene, that would imply an effect on deep ocean circulation soon after the opening of a shallow passage between Antarctica and South America and before the separation of Australia from Antarctica allowed a full circumpolar passage. Future work should resolve the evolution of interbasinal $\delta^{18}O$ gradients during this interval.

[31] The greater heterogeneity of the Late Cretaceous ocean should be examined further; by analogy, we suggest that a wind-driven upwelling engine existed of similar importance to the Neogene ACC. A Tethyan circumpolar current might have functioned in analogous fashion to the ACC [Hotinski and Toggweiler, 2003], although this idea has been controversial [Poulsen et al., 1998]. Even in the absence of a complete circumpolar current, the open equatorial expanse may have provided sufficiently strong wind-driven upwelling to enable differentiation between Pacific NCW formation and Atlantic SCW formation. In any case, we find it intriguing that the reduction in isotopic gradients is approximately coeval with the northward drift of India restricting the Tethys.

[32] Acknowledgments. We thank Dennis Kent, Peter Barrett, Ellen Thomas, Philip Sexton, and two anonymous reviewers for useful comments that significantly improved the manuscript. This research was supported in part by NSF grant OCE06–23256.

References

Berger, W. H. (2007), Cenozoic cooling, Antarctica. The timing of the divergence of Southern Ocean $\delta^{18}O$ values and gradual restriction of the highest $\delta^{18}O$ values to the high-latitude Southern Ocean occurred during the middle Eocene, although the difference between the Southern Ocean and Pacific trends does not reach the 90% confidence level until the late Eocene (Figure 6). If the thermal differentiation of the Southern Ocean occurred during the middle Eocene, that would imply an effect on deep ocean circulation soon after the opening of a shallow passage between Antarctica and South America and before the separation of Australia from Antarctica allowed a full circumpolar passage. Future work should resolve the evolution of interbasinal $\delta^{18}O$ gradients during this interval.

[31] The greater heterogeneity of the Late Cretaceous ocean should be examined further; by analogy, we suggest that a wind-driven upwelling engine existed of similar importance to the Neogene ACC. A Tethyan circumpolar current might have functioned in analogous fashion to the ACC [Hotinski and Toggweiler, 2003], although this idea has been controversial [Poulsen et al., 1998]. Even in the absence of a complete circumpolar current, the open equatorial expanse may have provided sufficiently strong wind-driven upwelling to enable differentiation between Pacific NCW formation and Atlantic SCW formation. In any case, we find it intriguing that the reduction in isotopic gradients is approximately coeval with the northward drift of India restricting the Tethys.

[32] Acknowledgments. We thank Dennis Kent, Peter Barrett, Ellen Thomas, Philip Sexton, and two anonymous reviewers for useful comments that significantly improved the manuscript. This research was supported in part by NSF grant OCE06–23256.

References

Berger, W. H. (2007), Cenozoic cooling, Antarctica. The timing of the divergence of Southern Ocean $\delta^{18}O$ values and gradual restriction of the highest $\delta^{18}O$ values to the high-latitude Southern Ocean occurred during the middle Eocene, although the difference between the Southern Ocean and Pacific trends does not reach the 90% confidence level until the late Eocene (Figure 6). If the thermal differentiation of the Southern Ocean occurred during the middle Eocene, that would imply an effect on deep ocean circulation soon after the opening of a shallow passage between Antarctica and South America and before the separation of Australia from Antarctica allowed a full circumpolar passage. Future work should resolve the evolution of interbasinal $\delta^{18}O$ gradients during this interval.

[31] The greater heterogeneity of the Late Cretaceous ocean should be examined further; by analogy, we suggest that a wind-driven upwelling engine existed of similar importance to the Neogene ACC. A Tethyan circumpolar current might have functioned in analogous fashion to the ACC [Hotinski and Toggweiler, 2003], although this idea has been controversial [Poulsen et al., 1998]. Even in the absence of a complete circumpolar current, the open equatorial expanse may have provided sufficiently strong wind-driven upwelling to enable differentiation between Pacific NCW formation and Atlantic SCW formation. In any case, we find it intriguing that the reduction in isotopic gradients is approximately coeval with the northward drift of India restricting the Tethys.

[32] Acknowledgments. We thank Dennis Kent, Peter Barrett, Ellen Thomas, Philip Sexton, and two anonymous reviewers for useful comments that significantly improved the manuscript. This research was supported in part by NSF grant OCE06–23256.
Cramer et al.: Benthic Isotope Compilation

PA4216

13 of 14

