Comment on “Atmospheric P_{CO_2} Perturbations Associated with the Central Atlantic Magmatic Province”

Michael R. Rampino1,2* and Ken Caldeira3

Schaller et al. (Research Article, 18 March 2011, p. 1404) proposed that carbon dioxide (CO$_2$) released by the Central Atlantic Magmatic Province eruptions over periods of about 20,000 years led to substantial increases of up to 2000 parts per million (ppm) in the concentration of atmospheric carbon dioxide (P$_{\text{CO}_2}$) near the Triassic-Jurassic boundary. Use of an atmosphere-ocean model coupled to a carbon-cycle model predicts P$_{\text{CO}_2}$ increases of less than 400 ppm from magmatic volatiles, with only a small climatic impact.

Schaller et al. (1) proposed that large amounts of CO$_2$ released by the Central Atlantic Magmatic Province (CAMP) (2.6 × 106 km3 of magma) eruptions contributed to substantial increases in atmospheric CO$_2$ near the Triassic-Jurassic boundary. With an estimated volcanic efflux of 1.4 × 1010 kg of CO$_2$ per km3 of basaltic magma (2), the total CO$_2$ release for the CAMP basalts is about 3.4 × 1016 kg of CO$_2$. There are three lava flow events in the Newark and Hartford Basins (1), so that each of the three lava flows could represent an erupted volume about 0.8 × 106 km3 of magma releasing 1.1 × 1016 kg CO$_2$. Schaller et al. (1) estimate that the release of this much CO$_2$ over a period of ~20 thousand years (ky) (the resolution of orbital precession) would directly increase atmospheric partial pressure of CO$_2$ (P_{CO_2}) by ~1400 parts per million (ppm) from a base of about 2000 ppm (using a conversion factor of 7.82 × 1012 kg of CO$_2$ per ppm CO$_2$). This is less than a doubling of P_{CO_2} and hence a global climatic warming estimated as less than ~3°C (3).

An eruption rate producing 0.8 × 106 km3 of basaltic magma in only 20 ky would be much greater than the commonly inferred 105- to 106-year duration for flood basalt volcanism (4, 5). However, if one scales up from the eruption of Laki in 1783, which produced 12 km3 of basaltic lava over about 2 months (2) at a rate of 4 × 103 m3 s$^{-1}$ (or 1.1 × 104 kg s$^{-1}$), then it would be possible to produce ~1016 km3 of lava in about 20 ky of semicontinuous eruption.

The time over which the magma is erupted affects the amount of CO$_2$ that stays in the atmosphere. We used an ocean-atmosphere box model coupled to a carbon-cycle model (6, 7) to simulate increases in P_{CO_2} resulting from the CAMP eruptions for two cases: an unrealistic instantaneous release, and release over a period of 20 ky (Fig. 1). Instantaneous release of 1016 kg of CO$_2$ results in an increase of P_{CO_2} of about 1300 ppm over a high Jurassic background of about 2000 ppm, similar to results of Schaller et al. (1). If the release is accomplished over a substantial time period, then one must take into account uptake of CO$_2$ by the oceans, and if long enough, interactions with the solid earth through rock weathering. When released over 20 ky, the increase results in a peak P_{CO_2} value of only about 400 ppm over early Jurassic background (Fig. 1). Thus, magmatic CO$_2$ release alone, even for eruptions producing a million cubic kilometers in periods as short as 20 ky, is probably not sufficient to cause major climatic changes and mass extinction (Fig. 1).

Schaller et al. (1) estimated P_{CO_2} up to 4000 to 5000 ppm after CAMP eruptions based on pedogenic carbonates. Palaeobotanical evidence suggests that P_{CO_2} may have increased by a factor of four across the Triassic-Jurassic boundary (8), and palynological studies have been interpreted as indicating an atmospheric P_{CO_2} at least 10 times present levels, with temperatures rising by about 10°C (9). If these estimates are correct, then an additional source of CO$_2$ from interactions between CAMP magma and country rock (10) or release of marine hydrate deposits (11) seems to be required to explain the evidence for very high early Jurassic P_{CO_2} at the time of the CAMP eruptions.

References

20 May 2011; accepted 5 October 2011

Fig. 1. Increase in atmospheric P_{CO_2} caused by magmatic volatiles from CAMP eruption of 1016 kg of CO$_2$ added to the atmosphere instantaneously (blue line) and over 20 ky (red line).
Response to Comment on “Atmospheric PCO2 Perturbations Associated with the Central Atlantic Magmatic Province”

Morgan F. Schaller,1* James D. Wright,1 Dennis V. Kent1,2

Rampino and Caldeira argue that the first pulse of the Central Atlantic Magmatic Province would increase the concentration of atmospheric carbon dioxide (PCO2) by only 400 parts per million if erupted over 20,000 years, whereas we observed a doubling within this interval. In the absence of any data to the contrary, we suggest that a more rapid (<1000-year) eruption is sufficient to explain this observation without relying on thermogenic degassing.

Our observations from the Newark Basin indicate that the first pulse of the Triassic-Jurassic Central Atlantic Magmatic Province (CAMP), represented by the Orange Mountain Basalt, was emplaced within a precession cycle and resulted in a doubling of the atmospheric partial pressure of CO2 (PCO2) above pre-eruptive background levels. A simple model with instantaneous degassing (<1 thousand years, ky), within the time scale of ocean overturning] of 2.5 × 1017 moles of CO2 (~1.2 × 1016 kg), roughly the efflux potential of the first volcanic pulse, gives a ~1400 parts per million (ppm) increase in PCO2 above the ~2000-ppm background level (1). This estimate is compatible with and (admittedly, barely) within the error of the doubling from ~2000 to 4400 ± 1200 ppm observed in the Newark Basin. Rampino and Caldeira (2) present a model whereby a 20-ky release of CO2 sediments is an unlikely source [e.g., see (9)], the next largest reactive carbon pool in Earth’s crust is organic, which implies that the extra CO2 needed for a protracted release would be relatively depleted in 13C. However, the organic carbon δ13C measurements from the Newark Basin (1) do not indicate a substantially larger 13C-depleted component in the overall atmospheric PCO2 increase, although there is a slight δ13C decrease (~0.5 per mil) above each volcanic unit. We note that some marine sections record a potential light carbon-isotope excursion at about this time (10); however, the exact relationship of the marine δ13C decrease to the CAMP eruptions remains unclear (e.g., see 11). Moreover, our observation of comparable PCO2 and δ13C changes after the second and third volcanic events would require a similar thermogenic input if the duration of each pulse was ~20 ky, which would represent a substantial repeated flux of thermogenic CO2 to the atmosphere at discrete intervals.

Therefore, we are left to speculate on the precise source of the CO2 pulse recorded in the Newark Basin, which is essentially an argument of release duration versus size. In the absence of any data to the contrary, we favor a rapid release that allows the majority of each perturbation to be volcanogenic but that does not preclude a metamorphic carbon source. The doubling of PCO2 observed after each volcanic unit in the Newark Basin is broadly consistent with other lower-resolution studies that indicate a tripling to quadrupling through the interval (12–14). The continued challenge to the modeling community is to devise a scenario that conforms to these observations.

References and Notes

Acknowledgments: This work was supported by National Science Foundation grant 0958867. This is Lamont-Doherty Earth Observatory Contribution 7497.

*To whom correspondence should be addressed. E-mail: schaller@rci.rutgers.edu

© 2011 The Authors
Science © 2011 American Association for the Advancement of Science